如圖,已知AB是⊙O的直徑,PB是⊙O的切線,PA交⊙O于C,AB=3cm,PB=4cm,則BC=______cm.
∵PB是⊙O的切線,
∴∠ABP=90°,
∵AB=3cm,PB=4cm,
∴AP=
AB2+BP2
=
32+42
=5;
∵AB是⊙O的直徑,
∴∠ACB=90°,
即BC為△ABP的高;
1
2
×AB×BP=
1
2
×AP×BC,
1
2
×3×4=
1
2
×5×BC,
∴BC=
12
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以坐標(biāo)原點(diǎn)O為圓心,6為半徑的圓交y軸于A、B兩點(diǎn).AM、BN為⊙O的切線.D是切線AM上一點(diǎn)(D與A不重合),DE切⊙O于點(diǎn)E,與BN交于點(diǎn)C,且AD<BC.設(shè)AD=m,BC=n.
(1)求m•n的值;
(2)若m、n是方程2t2-30t+k=0的兩根.求:
①△COD的面積;
②CD所在直線的解析式;
③切點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的圓心在Rt△ABC的直角邊AC上,⊙O經(jīng)過C、D兩點(diǎn),與斜邊AB交于點(diǎn)E,連接BO、ED,有BOED,作弦EF⊥AC于G,連接DF.
(1)求證:AB為⊙O的切線;
(2)若⊙O的半徑為5,sin∠DFE=
3
5
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△AOB中,OA=OB,∠A=30°,⊙O經(jīng)過AB的中點(diǎn)E分別交OA、OB于C、D兩點(diǎn),連接CD.
(1)求證:AB是⊙O的切線;
(2)求證:ABCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分線交BC于E,連接DE.
(1)說明點(diǎn)D在△ABE的外接圓上;
(2)若∠AED=∠CED,試判斷直線CD與△ABE外接圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O與CA、CB相切于點(diǎn)A、B,OA=OB=2
3
cm,AB=6cm,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知∠BAC=45°,一動(dòng)點(diǎn)O在射線AB上運(yùn)動(dòng)(點(diǎn)O與點(diǎn)A不重合),設(shè)OA=x,如果半徑為1的⊙O與射線AC有公共點(diǎn),那么x的取值范圍是( 。
A.0<x≤
2
B.l<x≤
2
C.1≤x<
2
D.x>
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長線上,∠B=∠D=30°.
(1)AD是⊙O的切線嗎?說明理由;
(2)若OD⊥AB,BC=5,求AD的長;
(3)在(2)的前提下,連接BD,則BD和⊙O及AD有何關(guān)系?簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案