【題目】如圖矩形ABCD中,AD=5,AB=7,點(diǎn)E為DC上一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊,當(dāng)點(diǎn)D的對(duì)應(yīng)點(diǎn)D′落在∠ABC的角平分線(xiàn)上時(shí),DE的長(zhǎng)為

【答案】
【解析】解:如圖,連接BD′,過(guò)D′作MN⊥AB,交AB于點(diǎn)M,CD于點(diǎn)N,作D′P⊥BC交BC于點(diǎn)P
∵點(diǎn)D的對(duì)應(yīng)點(diǎn)D′落在∠ABC的角平分線(xiàn)上,
∴MD′=PD′,
設(shè)MD′=x,則PD′=BM=x,
∴AM=AB﹣BM=7﹣x,
又折疊圖形可得AD=AD′=5,
∴x2+(7﹣x)2=25,解得x=3或4,
即MD′=3或4.
在Rt△END′中,設(shè)ED′=a,①當(dāng)MD′=3時(shí),AM=7﹣3=4,D′N(xiāo)=5﹣3=2,EN=4﹣a,
∴a2=22+(4﹣a)2 ,
解得a= ,即DE= ,②當(dāng)MD′=4時(shí),AM=7﹣4=3,D′N(xiāo)=5﹣4=1,EN=3﹣a,
∴a2=12+(3﹣a)2 ,
解得a= ,即DE=
故答案為:
連接BD′,過(guò)D′作MN⊥AB,交AB于點(diǎn)M,CD于點(diǎn)N,作D′P⊥BC交BC于點(diǎn)P,先利用勾股定理求出MD′,再分兩種情況利用勾股定理求出DE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,對(duì)于任意實(shí)數(shù)x1 , x2 , 當(dāng)x1>x2時(shí),滿(mǎn)足y1<y2的是(
A.y=﹣3x+2
B.y=2x+1
C.y=2x2+1
D.y=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師的數(shù)學(xué)課采用小組合作學(xué)習(xí)的方式把班上40名學(xué)生分成若干個(gè)小組.如果要求每小組只能是5人或6,那么分組方案有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC=9.6 cm,AB=,CD=2AB,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B、C是數(shù)軸上的三點(diǎn),O是原點(diǎn),BO=3,AB=2BO,5AO=3CO.

(1)寫(xiě)出數(shù)軸上點(diǎn)A、C表示的數(shù);

(2)點(diǎn)P、Q分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),M為線(xiàn)段AP的中點(diǎn),點(diǎn)N在線(xiàn)段CQ,CN=CQ.設(shè)運(yùn)動(dòng)的時(shí)間為t(t>0).

數(shù)軸上點(diǎn)M、N表示的數(shù)分別是    (用含t的式子表示);

t為何值時(shí),M、N兩點(diǎn)到原點(diǎn)的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)直徑為1m的圓形鐵皮,要從中剪出一個(gè)最大的圓心角為90°的扇形ABC.
(1)求被剪掉陰影部分的面積;
(2)用所留的扇形鐵皮圍成一個(gè)圓錐,該圓錐的底面圓的半徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線(xiàn)C1 與C2:y=x2+2mx+n具有下列特征:①都與x軸有交點(diǎn);②與y軸相交于同一點(diǎn).
(1)求m,n的值;
(2)試寫(xiě)出x為何值時(shí),y1>y2?
(3)試描述拋物線(xiàn)C1通過(guò)怎樣的變換得到拋物線(xiàn)C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC,且DE= AC,連接CE、OE,連接AE交OD于點(diǎn)F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為4,∠ABC=60°,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車(chē)的騎車(chē)時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖。請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922393511583744/1923977001213952/STEM/d5900c7cb9b84a9a89aefef7d82bcf93.png]

(1)這次被調(diào)查的總?cè)藬?shù)是多少?

(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)如果騎自行車(chē)的平均速度為12km/h,請(qǐng)估算,在租用公共自行車(chē)的市民中,騎車(chē)路程不超過(guò)6km的人數(shù)所占的百分比。

查看答案和解析>>

同步練習(xí)冊(cè)答案