用換元法解方程組
5
x
-
6
y+1
=1
1
x
+
2
y+1
=1
時,可設(shè)
1
x
=u
1
y+1
=v
,則原方程組可化為關(guān)于u、v的整式方程組為
 
分析:本題考查用換元法解分式方程的能力.可根據(jù)方程特點設(shè)
1
x
=u,
1
y+1
=v,則原方程可化為關(guān)于u、v的整式方程組.
解答:解;根據(jù)方程特點設(shè)
1
x
=u,
1
y+1
=v,
則原方程可化為關(guān)于u、v的整式方程組
5u-6v=1
u+2v=1

故答案為:
5u-6v=1
u+2v=1
點評:本題考查用換元法解分式方程的能力,用換元法解一些復(fù)雜的分式方程是比較簡單的一種方法,根據(jù)方程特點設(shè)出相應(yīng)未知數(shù),解方程能夠使問題簡單化,注意求出方程解后要驗根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的內(nèi)容
用換元法求解方程組的解
題目:已知方程組
a1x+b1y=c1
a2x+b2y=c2
①的解是
x=4
y=6
,
求方程組
2a1x+3b1y=c1
2a2x+3b2y=c2
②的解.
解:方程組
2a1x+3b1y=c1
2a2x+3b2y=c2
②可以變形為:方程組
a1•2x+b1•3y=c1
a2•2x+b2•3y=c2

設(shè)2x=m,3y=n,則方程組③可化為
a1m+b1n=c1
a2m+b2n=c2

比較方程組④與方程組①可得
m=4
n=6
,即
2x=4
3y=6

所以方程組②的解為
x=2
y=2

參考上述方法,解決下列問題:
(1)若方程組
5x-2y=4
2x-3y=-5
的解是
x=2
y=3
,則方程組
5(x+1)-2(y-2)=4
2(x+1)-3(y-2)=-5
的解為
x=1
y=5
x=1
y=5

(2)若方程組
a1x+b1y=c1
a2x+b2y=c2
①的解是
x=-1
y=3
,求方程組
a1(x-2)+2b1y=c1
a2(x-2)+2b2y=c2
②的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面的內(nèi)容
用換元法求解方程組的解
題目:已知方程組
a1x+b1y=c1
a2x+b2y=c2
①的解是
x=4
y=6
,
求方程組
2a1x+3b1y=c1
2a2x+3b2y=c2
②的解.
方程組
2a1x+3b1y=c1
2a2x+3b2y=c2
②可以變形為:方程組
a1•2x+b1•3y=c1
a2•2x+b2•3y=c2

設(shè)2x=m,3y=n,則方程組③可化為
a1m+b1n=c1
a2m+b2n=c2

比較方程組④與方程組①可得
m=4
n=6
,即
2x=4
3y=6

所以方程組②的解為
x=2
y=2

參考上述方法,解決下列問題:
(1)若方程組
5x-2y=4
2x-3y=-5
的解是
x=2
y=3
,則方程組
5(x+1)-2(y-2)=4
2(x+1)-3(y-2)=-5
的解為______;
(2)若方程組
a1x+b1y=c1
a2x+b2y=c2
①的解是
x=-1
y=3
,求方程組
a1(x-2)+2b1y=c1
a2(x-2)+2b2y=c2
②的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用換元法解方程組
5
x
-
6
y+1
=1
1
x
+
2
y+1
=1
時,可設(shè)
1
x
=u
,
1
y+1
=v
,則原方程組可化為關(guān)于u、v的整式方程組為______.

查看答案和解析>>

同步練習(xí)冊答案