【題目】如圖,等邊三角形的邊長為4為邊上一點,過點,交于點,在右側(cè)作等邊三角形,記的距離為的距離為,

(1),試求線段的長,并求m1、m2的值.

(2),用含的代數(shù)式表示,,并求在∠C的平分線上時x的值.

【答案】(1)DE=m1=m2=0(2),,當(dāng)的平分線上時x=1.

【解析】

(1)過點,則 ,延長DP交AC于點G,由題意可得:△BED、△DFPDGC、均為30°的直角三角形,由可得 ,由等邊三角形可得,故 由于 ,可得 ;

2)由(1)得當(dāng)點P在三角形ABC內(nèi)部時,

①當(dāng) 時,點P在三角形ABC內(nèi)部, 此時,同(1)中的思路;②當(dāng) 時,點P在三角形ABC一邊上,同(1)可知,

③當(dāng)時,點P在三角形ABC外部時,過點,則 , DP與AC交于點G. 由題意可得:△BED、△DFP、DGC、均為30°的直角三角形可得,由等邊三角形可得,故,

DC=BC-BD=4-x可得 ,故;當(dāng)的平分線上時,此時在三角形內(nèi)部 ,有 列出方程 求解即可;

解:(1)如下圖,過點,則 ,延長DP交AC于點G.

DEBC,∠EDP=60°,

∴∠PDC=30°,

∵∠C=60°,

∴∠DGC=180°-PDC-C=90°,

,∠B=60°,∠BDE=90°,

,

,∠PDC=30°,PFBC,

,

,

且∠C=60°,PG⊥AC,

;

(2)(1)得當(dāng)點P在三角形ABC內(nèi)部時,,

①當(dāng) 時,點P在三角形ABC內(nèi)部,同(1)如下圖,

(1)可證∠DGC=90°,

,

,∠B=60°,∠BDE=90°,

,∠PDC=30°,PFBC,

,

DC=BC-BD=4-x,

且∠C=60°,PG⊥AC,

,

,

②當(dāng) 時,點P在三角形ABC一邊上,

(1)可知,

③當(dāng)時,點P在三角形ABC外部,

如下圖,過點,則 , DP與AC交于點G.

(1)可證∠DGC=90°,

BD=x,∠B=60°,∠BDE=90°,

,

,∠PDC=30°,PFBC,

DC=BC-BD=4-x,

且∠C=60°,PG⊥AC,

,

,

綜上所述,,

當(dāng)的平分線上時,易知在三角形內(nèi)部 ,有,

,

解得 x=1;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點D,DEABAB的延長線于點E,DFAC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為(  )

A. 50m B. 25m C. (50﹣)m D. (50﹣25)m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C上,另兩個頂點A、B分別在、上,則的值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CDBE,DGBC于點 G,EFBC于點 F,且 DG=EF.

1)求證:DGC≌△EFB.

2)連結(jié) BD,CE. 求證:BD=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC,線段AMBC邊上的高DAM上的點,CD為一邊,CD的下方作等邊△CDE,連結(jié)BE

1填空ACB=____CAM=____;

2求證AOC≌△BEC;

3延長BE交射線AM于點F,請把圖形補充完整,并求∠BFM的度數(shù)

4當(dāng)動點D在射線AM,且在BC下方時設(shè)直線BE與直線AM的交點為FBFM的大小是否發(fā)生變化?若不變請在備用圖中面出圖形,井直接寫出∠BFM的度數(shù);若變化請寫出變化規(guī)律

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結(jié)論:4a+2b+c<0;2a+b<0;b2+8a>4ac;

a<﹣1;其中結(jié)論正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D、EF分別在AB、BCAC邊上,且BE=CFBD=CE.

1)求證:△DEF是等腰三角形;

2)當(dāng)∠A=36°時,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖與設(shè)計:

在圖1和圖2中,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.

1)在圖1中以格點為頂點畫一個三角形,使三角形三邊長分別為,4;

2)在圖2中以格點為頂點畫一個面積為10的正方形;

3)在圖3的正方形網(wǎng)格中建立平面直角坐標(biāo)系,若各頂點的坐標(biāo)分別為:,,請你作,使關(guān)于軸對稱.

查看答案和解析>>

同步練習(xí)冊答案