【題目】如圖,壁虎在一座底面半徑為 2 米,高為 5 米的油罐的下底邊沿點(diǎn) A處,它 發(fā)現(xiàn)在自己的正上方油罐上邊緣的點(diǎn) B處有一只害蟲(chóng),便決定捕捉這只害蟲(chóng),為了不引起害 蟲(chóng)的注意,它故意不走直線,而是繞著油罐,沿一條螺旋路線,從背后對(duì)害蟲(chóng)進(jìn)行突然襲擊.結(jié) 果,壁虎偷襲成功,獲得了一頓美餐.請(qǐng)問(wèn)壁虎至少要爬行多少路程 才能捕到害蟲(chóng)?(π取 3)
【答案】壁虎至少要爬行 13 米才能捕到害蟲(chóng)
【解析】試題分析:首先畫(huà)出如圖的圓柱側(cè)面展開(kāi)圖,再連接AB,再根據(jù)勾股定理求出AB的長(zhǎng)就是壁虎所爬的路程.
試題解析:把這個(gè)油罐看成一個(gè)圓柱體,再畫(huà)出它的側(cè)面展開(kāi)圖(是一個(gè)長(zhǎng)方形)如圖所示.
因?yàn)锳,B 兩點(diǎn)間線段最短,所以壁虎至少要爬行線段 AB 這段路程,才能捕捉到害蟲(chóng).
而 AB2=AC2+BC2=(2π×2) 2+52≈169,
所以 AB=13 米.
答:壁虎至少要爬行 13 米才能捕到害蟲(chóng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩同學(xué)用兩枚質(zhì)地均勻的骰子作游戲,規(guī)則如下:每人隨機(jī)擲兩枚骰子一次(若擲出的兩枚骰子摞在一起,則重?cái)S),點(diǎn)數(shù)和大的獲勝;點(diǎn)數(shù)和相同為平局. 根據(jù)上述規(guī)則,解答下列問(wèn)題;
(1)隨機(jī)擲兩枚骰子一次,用列表法求點(diǎn)數(shù)和為8的概率;
(2)甲先隨機(jī)擲兩枚骰子一次,點(diǎn)數(shù)和是7,求乙隨機(jī)擲兩枚骰子一次獲勝的概率. (骰子:六個(gè)面分別有1、2、3、4、5、6個(gè)小圓點(diǎn)的立方塊.點(diǎn)數(shù)和:兩枚骰子朝上的點(diǎn)數(shù)之和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O為AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點(diǎn)F,交∠ACB內(nèi)角平分線CE于E.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論;
(3)若AC邊上存在點(diǎn)O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩艘輪船同時(shí)從港口O出發(fā),甲輪船以20海里/時(shí)的速度向南偏東45°方向航行,乙輪船向南偏西45°方向航行.已知它們離開(kāi)港口O兩小時(shí)后,兩艘輪船相距50海里,求乙輪船平均每小時(shí)航行多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對(duì)全等三角形.其中正確結(jié)論的個(gè)數(shù)是( 。
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C(0,3).且點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)P是拋物線上第一象限內(nèi)的一個(gè)點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)連PO、PB,如果把△POB沿OB翻轉(zhuǎn),所得四邊形POP′B恰為菱形,那么在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△QAB與△POB相似?若存在求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由;
(3)若(2)中點(diǎn)Q存在,指出△QAB與△POB是否位似?若位似,請(qǐng)直接寫(xiě)出其位似中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD、EF都經(jīng)過(guò)點(diǎn)O,且AB⊥CD,OG平分∠BOE,如果∠EOG=∠AOE,求∠EOG,∠DOF和∠AOE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com