【題目】已知直線l1:y=﹣2x+5和直線l2:y=x﹣4,直線l1與y軸交于點A,直線l2與y軸交于點B.
(1)求兩條直線l1和l2的交點C的坐標;
(2)求兩條直線與y軸圍成的三角形的面積;
(3)已知點D是y軸上一點,若△BCD為等腰直角三角形,直接寫出D點坐標.
【答案】(1)(3,﹣1);(2);(3) (0,﹣1)或(0,2)
【解析】
(1)解方程組即可得到兩條直線l1和l2的交點C的坐標;
(2)根據(jù)點C為(3,﹣1),直線l1和l2與y軸的交點分別為A(0,5)、B(0,﹣4),即可得到兩條直線與y軸圍成的三角形的面積;
(3)分兩種情況,根據(jù)函數(shù)圖像及等腰直角三角形的特點即可求解.
解:(1)由題意得,
解方程組得
∴l1和l2的交點C為(3,﹣1);
(2)如圖,過點C作CE⊥y軸于E,則CE=3.
在y=﹣2x+5中,令x=0,則y=5,
在y=x﹣4中,令x=0,則y=﹣4,
∴直線l1和l2與y軸的交點分別為A(0,5)、B(0,﹣4),
則===;
(3)分兩種情況討論:當∠BDC=90°時,點D與點E重合,即D(0,﹣1);
當∠BCD=90°時,BE=DE=3,DO=3﹣1=2,即D(0,2);
∴D點坐標為(0,﹣1)或(0,2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長線于點M,交AB的延長線于點E,切點為F,連接AF交CD于點N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=,AN=,求圓O的直徑的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件50元,售價為每件60元,每天可賣出190件;如果每件商品的售價每上漲1元,則每天少賣10件,設每件商品的售價上漲x元(x為正整數(shù)),每天的銷售利潤為y元.
(1)求y關于x的關系式;
(2)每件商品的售價定為多少元時,每天的利潤恰為1980元?
(3)每件商品的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游泳館每年夏季推出兩種游泳付費方式,方式一:先購買會員證,每張會員證100元,只限本人當年使用,憑證游泳每次再付費5元;方式二:不購買會員證,每次游泳付費9元.
設小明計劃今年夏季游泳次數(shù)為x(x為正整數(shù)).
(I)根據(jù)題意,填寫下表:
游泳次數(shù) | 10 | 15 | 20 | … | x |
方式一的總費用(元) | 150 | 175 | ______ | … | ______ |
方式二的總費用(元) | 90 | 135 | ______ | … | ______ |
(Ⅱ)若小明計劃今年夏季游泳的總費用為270元,選擇哪種付費方式,他游泳的次數(shù)比較多?
(Ⅲ)當x>20時,小明選擇哪種付費方式更合算?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道對于x軸上的任意兩點A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O為坐標原點,若點P坐標為(1,3),則d(O,P)= ;
(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(3)試求點M(2,3)到直線y=x+2的最小直角距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A是∠MON邊OM上一點,AE∥ON.
(1)在圖中作∠MON的角平分線OB(要求用尺規(guī)),交AE于點B;過點A畫OB的垂線,垂足為點D,交ON于點C,連接CB,將圖形補充完整.
(2)判斷四邊形OABC的形狀,并證明你的結論.
解:四邊形OABC是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年9月,某手機公司發(fā)布了新款智能手機,為了調查某小區(qū)業(yè)主對該款手機的購買意向,該公司在某小區(qū)隨機對部分業(yè)主進行了問卷調查,規(guī)定每人只能從A類(立刻去搶購)、B類(降價后再去買)、C類(猶豫中)、D類(肯定不買)這四類中選一類,并制成了以下兩幅不完整的統(tǒng)計圖,由圖中所給出的信息解答下列問題:
(1)扇形統(tǒng)計圖中B類對應的百分比為 %,請補全條形統(tǒng)計圖;
(2)若該小區(qū)共有4000人,請你估計該小區(qū)大約有多少人立刻去搶購該款手機.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=4,求BC+DE的值.
小明發(fā)現(xiàn),過點E作EF∥DC,交BC延長線于點F,構造△BEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
(1)請按照上述思路完成小明遇到的這個問題
(2)參考小明思考問題的方法,解決問題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點G,AC=BF=DF,求∠DGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產品運到B地.已知公路運價為1.5元/(噸·千米),鐵路運價為1.2元/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.
求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產品多少噸?
(2)這批產品的銷售款比原料費與運輸費的和多多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com