【題目】如圖,邊長為2的正方形ABCD內(nèi)接于⊙O,點E是 上一點(不與A、B重合),點F是 上一點,連接OE,OF,分別與AB,BC交于點G,H,有下列結(jié)論:
= ;
②△OGH是等腰三角形;
③四邊形OGBH的面積隨著點E位置的變化而變化;
④若BG=1﹣ ,則BG,GE, 圍成的面積是 +
其中正確的是(把所有正確結(jié)論的序號都填上)

【答案】①②
【解析】如圖所示,連接OC、OB、CF、BE.

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

=

= ,

= ;故①正確,

在△BOG與△COH中,

∴△BOG≌△COH(ASA),

∴OG=OH,
∵∠HOG=90°

∴△OGH是等腰直角三角形,②正確,

∴SOBG=SOCH,

∴S四邊形OGBH=SBOC= S正方形ABCD=定值,故③錯誤;

作OM⊥AB于M,則OM=BM= AB=1,OB= OM= ,

∴GM= ,

∴tan∠GOM= = ,

∴∠GOM=30°,

∵∠BOM=45°,

∴∠BOG=45°﹣30°=15°,

∴扇形BOE的面積= = ,

∵BG=1﹣ ,

∴AG=1+ ,

過G作GP⊥BO于P,

∴PG=PB=

∴△OBG的面積= × ×( )= ,

∴BG,GE, 圍成的面積=扇形BOE的面積﹣△BOG的面積= + ,故④錯誤.

所以答案是:①②.

【考點精析】根據(jù)題目的已知條件,利用正多邊形和圓和扇形面積計算公式的相關(guān)知識可以得到問題的答案,需要掌握圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀下面的材料并把解答過程補充完整.

問題:在關(guān)于,的二元一次方程組中,,,求的取值范圍.

在關(guān)于,的二元一次方程組中,利用參數(shù)的代數(shù)式表示,,然后根據(jù),列出關(guān)于參數(shù)的不等式組即可求得的取值范圍.解:由,解得,又因為,,所以解得____________.

2)請你按照上述方法,完成下列問題:

①已知,且,,求的取值范圍;

②已知,在關(guān)于,的二元一次方程組中,,,請直接寫出的取值范圍(結(jié)果用含的式子表示)____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1x(﹣x2(﹣x3;(2x3x5﹣(2x42+x10÷x2

3)(﹣0.1252018×82019;(4)(ab10÷(ba3÷(ba3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,AD=BD=BC.在BC延長線上取點C1,連接DC1,使DC=CC1,在CC1延長線上取點C2,在DC1上取點E,使EC1=C1C2,同理FC2=C2C3,若繼續(xù)如此下去直到Cn,則∠Cn的度數(shù)為____(結(jié)果用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于 EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M.
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,ABCD,將點PAB、CD內(nèi)部,∠B,∠D,∠P滿足的數(shù)量關(guān)系是   ,并說明理由

(2)在圖1,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖2,利用(1)中的結(jié)論(可以直接套用),求∠BPD﹑∠B﹑∠D﹑∠BQD之間有何數(shù)量關(guān)系?

(3)科技活動課上,雨軒同學制作了一個圖(3)的“飛旋鏢”,經(jīng)測量發(fā)現(xiàn)∠PAC=30°,∠PBC=35°,他很想知道∠APB與∠ACB的數(shù)量關(guān)系,你能告訴他嗎?說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù) ykx4(k0)

(1)x=-1 時,y2,求此函數(shù)的表達式;

(2)函數(shù)圖象與 x 軸、y 軸的交點分別為 AB, 求出AOB 的面積;

(3)利用圖象求出當 y3 時,x 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是

查看答案和解析>>

同步練習冊答案