【題目】(1)計算: ﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化簡,再求值 (a2﹣b2),其中a=,b=﹣2.
【答案】(1) -2 (2)-
【解析】試題分析:(1)將原式第一項被開方數(shù)8變?yōu)?/span>4×2,利用二次根式的性質(zhì)化簡第二項利用特殊角的三角函數(shù)值化簡,第三項利用零指數(shù)公式化簡,最后一項利用負指數(shù)公式化簡,把所得的結(jié)果合并即可得到最后結(jié)果;
(2)先把和a2﹣b2分解因式約分化簡,然后將a和b的值代入化簡后的式子中計算,即可得到原式的值.
解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
=2﹣2×+1﹣3
=2﹣+1﹣3
=﹣2;
(2)(a2﹣b2)
=(a+b)(a﹣b)
=a+b,
當(dāng)a=,b=﹣2時,原式=+(﹣2)=﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,AE∥BC,BE交AD于點F,且AF=DF.
(1)求證:△AFE≌ODFB;
(2)求證:四邊形ADCE是平行四邊形;
(3)當(dāng)AB、AC之間滿足什么條件時,四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A. B兩地果園分別有蘋果30噸和40噸,C. D兩地的農(nóng)貿(mào)市場分別需求蘋果20噸和50噸。已知從A. B兩地到C. D兩地的運價如表:
(1)填空:若從A果園運到C地的蘋果為10噸,則從A果園運到D地的蘋果為___噸,從B果園運到C地的蘋果為___噸,從B果園運到D地的蘋果為___噸,總運輸費為___元;
(2)如果總運輸費為750元時,那么從A果園運到C地的蘋果為多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】威麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列兩個式子:2﹣=2×+1,5﹣=5×+1.給出定義如下:我們稱使等式a﹣b=ab+1成立的一對有理數(shù)a,b為“共生有理數(shù)對”,記為(a,b),數(shù)對(2,),和(5,)都是“共生有理數(shù)對”.
(1)數(shù)對(﹣2,1)和(3,)中是“共生有理數(shù)對”的是 ;
(2)若(a,﹣)是“共生有理數(shù)對”,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知P(1,2).
(1)在平面直角坐標系中描出點P(保留畫圖痕跡);
(2)如果將點P向左平移3個單位長度,再向上平移1個單位長度得到點P',則點P'的坐標為 .
(3)點A在坐標軸上,若S△OAP=2,直接寫出滿足條件的點A的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】右圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A、B、C、D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為( )
A. 5πcm2 B. 10πcm2 C. 15πcm2 D. 20πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;
(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個正方形ABCD,點P是邊BC上一點.將繞點A逆時針方向旋轉(zhuǎn)90°得到(點B,P的對應(yīng)點分別是)
(1)畫出旋轉(zhuǎn)后所得到的;
(2)聯(lián)結(jié),設(shè),,試用表示的面積;
(3)若的面積為18,的面積為5,試求PC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com