【題目】隨著生活節(jié)奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習慣.由此催生了一批外賣點餐平臺,已知某外賣平臺的送餐費用與送餐距離有關(該平臺只給5千米范圍內配送),為調査送餐員的送餐收入,現(xiàn)從該平臺隨機抽取80名點外賣的用戶進行統(tǒng)計,按送餐距離分類統(tǒng)計結果如下表:

送餐距離x(千米)

0x1

1x2

2x3

3x4

4x5

數(shù)量

12

20

24

16

8

1)從這80名點外賣的用戶中任取一名用戶,該用戶的送餐距離不超過3千米的概率為 ;

2)以這80名用戶送餐距離為樣本,同一組數(shù)據(jù)取該小組數(shù)據(jù)的中間值(例如第二小組(1x 2)的中間值是1.5),試估計利用該平臺點外賣用戶的平均送餐距離;

3)若該外賣平臺給送餐員的送餐費用與送餐距離有關,不超過2千米時,每份3元;超過2千米但不超4千米時,每份5元;超過4千米時,每份9元. 以給這80名用戶所需送餐費用的平均數(shù)為依據(jù),若送餐員一天的目標收入不低于150元,試估計一天至少要送多少份外賣?

【答案】1;(2)估計利用該平臺點外賣用戶的平均送餐距離為2.35千米;(3)估計一天至少要送33份外賣.

【解析】

1)由表中數(shù)據(jù),用頻率計算所求的概率值;
2)計算加權平均數(shù)即可;
3)計算送一份外賣的平均收入,再求得一天至少要送多少份外賣.

1)由表中數(shù)據(jù),計算所求的概率為P=

故答案為:;

2)估計利用該平臺點外賣用戶的平均送餐距離為:

×12×0.5+20×1.5+24×2.5+16×3.5+8×4.5=2.35(千米);

3)送一份外賣的平均收入為:+5+9×=(元),

150÷≈32.6,

所以估計一天至少要送33份外賣.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=αDEAC于點E,且cosα=.下列結論:①△ADE∽△ACD;BD=6時,△ABD△DCE全等;③△DCE為直角三角形時,BD8;④0<CE≤6.4.其中正確的結論是________.(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A、B兩點的坐標分別為(―2,0,0,1),⊙C的圓心坐標為(0,―1),半徑為1.若D是⊙C上的一個動點,射線ADy軸交于點E,則△ABE面積的最大值是( )

A. 4 B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OABCD的對稱中心,點A的坐標為(2,-2)AB=5,AB//x軸,反比例函數(shù)y=的圖象經過點D,將ABCD沿y軸向下平移,使點C的對應點C′落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為(  )

A.10B.18C.20D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰RtABP的斜邊AB=2,點MN在斜邊AB上.若PMN是等腰三角形且底角正切值為2,則MN_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,點C坐標為(﹣10),tan∠ACO2.一次函數(shù)ykx+b的圖象經過點B、C,反比例函數(shù)y的圖象經過點B

1)求一次函數(shù)關系式和反比例函數(shù)的關系式;

2)當x0時,kx+b0的解集為   ;

3)若x軸上有兩點E、F,點E在點F的左邊,且EF1.當四邊形ABEF周長最小時,請直接寫出點E的橫坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC和△DEC均為等腰三角形,且∠ACB=DCE=90°,連接BEAD,兩條線段所在的直線交于點P.

1)線段BEAD有何數(shù)量關系和位置關系,請說明理由.

2)若已知BC=12DC=5,△DEC繞點C順時針旋轉,

①如圖2,當點D恰好落在BC的延長線上時,求AP的長;

②在旋轉一周的過程中,設△PAB的面積為S,求S的最值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,將繞點按逆時針方向旋轉.得到,連接,交于點

1)求證:;

2)用表示的度數(shù);

3)若使四邊形是菱形,求的度數(shù),

查看答案和解析>>

同步練習冊答案