【題目】如圖,在ABC中,BC=2AB,BD為∠ABC的角平分線,∠ADB=45°,過點(diǎn)AAEBD于點(diǎn)E,BE=,則DE的長(zhǎng)為__________

【答案】

【解析】

延長(zhǎng)AEBCF,過點(diǎn)FFGBDACG,利用ASA易證ABE≌△FBE,可得AE=EF,AB=BF,進(jìn)而得到FGBDC的中位線,DEAFG的中位線,然后根據(jù)中位線的性質(zhì)列方程求解即可.

解:如圖,延長(zhǎng)AEBCF,過點(diǎn)FFGBDACG,

BD為∠ABC的角平分線,AEBD

∴∠ABE=FBE,∠AEB=FEB=90°,

又∵BE=BE,

ABE≌△FBEASA),

AE=EFAB=BF,

BC=2AB=2BFEAF中點(diǎn),

FBC中點(diǎn),

FGBD,

FGBDC的中位線,DEAFG的中位線,

FG=2DEFG=,

,即,

,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AFDE交于點(diǎn)M,OBD的中點(diǎn),則下列結(jié)論:

①∠AME=90°;②∠BAF=EDB;③∠BMO=90°;MD=2AM=4EM;AM=MF.其中正確結(jié)論的是( 。

A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)分別為A(3,4)、B(1,1)、C(4,2).

(1)畫出ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的A1BC1,其中A、C分別和A1、C1對(duì)應(yīng).

(2)平移ABC,使得A點(diǎn)落在x軸上,B點(diǎn)落在y軸上,畫出平移后的A2B2C2,其中A、B、C分別和A2B2C2對(duì)應(yīng).

(3)填空:在(2)的條件下,設(shè)ABC,A2B2C2的外接圓的圓心分別為M、M2,則MM2=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過點(diǎn)EGEAB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明調(diào)查了班級(jí)里20位同學(xué)本學(xué)期購(gòu)買課外書的花費(fèi)情況,并將結(jié)果繪制成了如圖的統(tǒng)計(jì)圖.在這20位同學(xué)中,本學(xué)期購(gòu)買課外書的花費(fèi)的眾數(shù)和中位數(shù)分別是( 。

A. 50,50 B. 50,30 C. 80,50 D. 30,50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)

(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)

測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3都在x軸上,點(diǎn)B1,B2,B3都在直線上,OA1B1,B1A1A2,B2B1A2,B2A2A3,B3B2A3都是等腰直角三角形,且OA1=1,則點(diǎn)B2019的坐標(biāo)是_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用無刻度的直尺繪圖.

1)如圖1,在中,AC為對(duì)角線,AC=BCAE△ABC的中線.畫出△ABC的高CH

2)如圖2,在直角梯形中,AC為對(duì)角線,AC=BC,畫出△ABC的高CH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+mx軸于點(diǎn)A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,與直線l交于點(diǎn)D,已知CDx軸平行,且SACD:SABD=3:5.

(1)求點(diǎn)A的坐標(biāo);

(2)求此二次函數(shù)的解析式;

(3)點(diǎn)P為直線l上一動(dòng)點(diǎn),將線段AC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點(diǎn)A,A'是對(duì)應(yīng)點(diǎn),點(diǎn)C,C'是對(duì)應(yīng)點(diǎn)).請(qǐng)問:是否存在這樣的點(diǎn)P,使得旋轉(zhuǎn)后點(diǎn)A'和點(diǎn)C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請(qǐng)直接寫出點(diǎn)A'的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案