【題目】在△ABC中,AB=AC,BC=2,將△ABC繞點(diǎn)C順針方向旋轉(zhuǎn)α(0°<α<360°),得到△DEC,使點(diǎn)E在AB邊上。
(1)如圖1,連接AD,
①求證:四邊形ABCD是平行四邊形;
② 當(dāng)AE=AD時,求旋轉(zhuǎn)角α的度數(shù);
(2)如圖2,若AE=2BE,求AB的長。
【答案】(1)①詳見解析;②旋轉(zhuǎn)角α的度數(shù)為36°;(2)AB=2.
【解析】
(1)①先根據(jù)旋轉(zhuǎn)得:AB=CD,再由等腰三角形的性質(zhì)和三角形內(nèi)角和定理及外角的性質(zhì)得:∠BAC=∠ACD,則AB∥CD,可得四邊形ABCD是平行四邊形;
②如圖,在△ADE中,設(shè)∠3=x°,用x分別表示△ADE三個內(nèi)角的度數(shù),根據(jù)三角形的內(nèi)角和列方程可得x的值,即可得旋轉(zhuǎn)角α的度數(shù);
(2)設(shè)BE=y,則AE=2y.AB=3y,證明△BCE∽△BAC,可得結(jié)論.
解:(1)①△ABC繞點(diǎn)C順時針方向旋轉(zhuǎn)得到△DEC
∴∠BCE=∠ACD BC=CE CD=CA
∴∠B=∠BEC
∵AB=AC ∴∠B=∠ACB ∴∠ACB=∠BEC
∴∠BCE=∠BAC
∵∠BCE=∠ACD
∴∠BAC=∠ACD
∴AB∥CD
∵CD=AC=AB
∴四邊形ABCD是平行四邊形 ;
②如圖 ∵AE=AD ∴∠1=∠2
由旋轉(zhuǎn)可得 ∠3=∠4
∵四邊形ABCD是平行四邊形
∴AD∥BC AB∥CD
∴∠DAC=∠ACB=∠B ∠1=∠4
在△ADE中,設(shè)∠3=x° 則∠4=x°,∠1=∠2=x°,∠B=90°-
∵∠1+∠EAD+∠2=180°
∴x+(x+90-)+x=180
∴x=36 ∴∠3=36°
∴旋轉(zhuǎn)角α的度數(shù)為36° ;
(2)∵∠B=∠B,∠BCE=∠3
∴△BCE∽△BAC ∴
設(shè)BE=y,則AE=2y,AB=3y
∴ 解得 y=
∴AB=.
故答案為:(1)①詳見解析;②旋轉(zhuǎn)角α的度數(shù)為36°;(2)AB=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(,),點(diǎn)Q的坐標(biāo)為(,),且,,若P,Q為某個矩形的兩個頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”.下圖為點(diǎn)P,Q 的“相關(guān)矩形”的示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0).
①若點(diǎn)B的坐標(biāo)為(3,1)求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為,點(diǎn)M的坐標(biāo)為(m,3).若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊的中點(diǎn),過D作DE⊥BC于點(diǎn)E,點(diǎn)P是邊BC上的一個動點(diǎn),AP與CD相交于點(diǎn)Q.當(dāng)AP+PD的值最小時,AQ與PQ之間的數(shù)量關(guān)系是( )
A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “任意畫一個三角形,其內(nèi)角和為”是隨機(jī)事件;
B. 某種彩票的中獎率是,說明每買100張彩票,一定有1張中獎;
C. “籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件;
D. 投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)一定是50次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全員賽課比賽,八年級3位數(shù)學(xué)老師分別記為A,B,C,(其中A是女老師,B,C是男老師)被安排在星期二下午三節(jié)上,他們通過抽簽決定上課順序。
(1)女老師A不希望上第一節(jié)課,卻偏偏抽到上第一節(jié)課的概率是
(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求女老師A比男老師B先上課的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小山的東側(cè)A點(diǎn)有一個熱氣球,由于受風(fēng)的影響,以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達(dá)C處,此時熱氣球上的人測得小山西側(cè)B點(diǎn)的俯角為30°,則小山東西兩側(cè)A,B兩點(diǎn)間的距離為( 。┟祝
A. 750 B. 375 C. 375 D. 750
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道不等式的兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.不等式組是否也具有類似的性質(zhì)呢?請解答下列問題.
(1)完成下列填空:
已知 | 用“<”或“>”填空 |
5+2_____3+1 | |
﹣3﹣1_____﹣5﹣2 | |
1﹣2_____4+1 |
(2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請你說明上述性質(zhì)的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的“工兵”、“連長”、“地雷”比較大小,共有6個棋子,分別為1個“工兵”,2個“連長”,3個“地雷”游戲規(guī)則如下:①游戲時,將棋反面朝上,兩人隨機(jī)各摸一個棋子進(jìn)行比賽,先摸者摸出的棋不放回;②“工兵”勝“地雷”,“地雷”勝“連長”,“連長”勝“工兵”;③相同棋子不分勝負(fù).
(1)若小方先摸,則小方摸到“排長”的事件是 ;若小方先摸到了“連長”,小輝在剩余的5個棋子中隨機(jī)摸一個,則這一輪中小方勝小輝的概率為 .
(2)如果先拿走一個“連長”,在剩余的5個棋子中小方先摸一個棋子,然后小輝在剩余的4個棋子中隨機(jī)摸一個,求這一輪中小方獲勝的概率 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點(diǎn)A作直線l,若直線l與兩坐標(biāo)軸圍成的三角形面積為8,請直接寫出滿足條件的直線l的條數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com