【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿邊AB向終點(diǎn)B運(yùn)動(dòng).過(guò)點(diǎn)P作PQ⊥AB交折線ACB于點(diǎn)Q,D為PQ中點(diǎn),以DQ為邊向右側(cè)作正方形DEFQ.設(shè)正方形DEFQ與△ABC重疊部分圖形的面積是y(cm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)當(dāng)點(diǎn)Q在邊AC上時(shí),正方形DEFQ的邊長(zhǎng)為 cm(用含x的代數(shù)式表示);
(2)當(dāng)點(diǎn)P不與點(diǎn)B重合時(shí),求點(diǎn)F落在邊BC上時(shí)x的值;
(3)當(dāng)0<x<2時(shí),求y關(guān)于x的函數(shù)解析式;
(4)直接寫(xiě)出邊BC的中點(diǎn)落在正方形DEFQ內(nèi)部時(shí)x的取值范圍.
【答案】(1)x;(2)x=;(3)見(jiàn)解析;(4)1<x<.
【解析】試題(1)由已知條件得到∠AQP=45°,求得PQ=AP=2x,由于D為PQ中點(diǎn),于是得到DQ=x;
(2)如圖①,延長(zhǎng)FE交AB于G,由題意得AP=2x,由于D為PQ中點(diǎn),得到DQ=x,求得GP=2x,列方程于是得到結(jié)論;
(3)如圖②,當(dāng)0<x≤時(shí),根據(jù)正方形的面積公式得到y=x2;如圖③,當(dāng)<x≤1時(shí),過(guò)C作CH⊥AB于H,交FQ于K,則CH=AB=2,根據(jù)正方形和三角形面積公式得到y=﹣x2+20x﹣8;如圖④,當(dāng)1<x<2時(shí),PQ=4﹣2x,根據(jù)三角形的面積公式得到結(jié)論;
(4)當(dāng)Q與C重合時(shí),E為BC的中點(diǎn),得到x=1,當(dāng)Q為BC的中點(diǎn)時(shí),BQ=,得到x=,于是得到結(jié)論.
試題解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,
∴∠AQP=45°,
∴PQ=AP=2x,
∵D為PQ中點(diǎn),
∴DQ=x,
(2)如圖①,延長(zhǎng)FE交AB于G,由題意得AP=2x,
∵D為PQ中點(diǎn),
∴DQ=x,
∴GP=2x,
∴2x+x+2x=4,
∴x=;
(3)如圖②,當(dāng)0<x≤時(shí),y=S正方形DEFQ=DQ2=x2,
∴y=x2;
如圖③,當(dāng)<x≤1時(shí),過(guò)C作CH⊥AB于H,交FQ于K,則CH=AB=2,
∵PQ=AP=2x,CK=2﹣2x,
∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,
∴y=S正方形DEFQ﹣S△MNF=DQ2﹣FM2,
∴y=x2﹣(5x﹣4)2=﹣x2+20x﹣8,
∴y=﹣x2+20x﹣8;
如圖④,當(dāng)1<x<2時(shí),PQ=4﹣2x,
∴DQ=2﹣x,
∴y=S△DEQ=DQ2,
∴y=(2﹣x)2,
∴y=x2﹣2x+2;
(4)當(dāng)Q與C重合時(shí),E為BC的中點(diǎn),
即2x=2,
∴x=1,
當(dāng)Q為BC的中點(diǎn)時(shí),BQ=,
PB=1,
∴AP=3,
∴2x=3,
∴x=,
∴邊BC的中點(diǎn)落在正方形DEFQ內(nèi)部時(shí)x的取值范圍為:1<x<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠ACB=∠ADB=90°,E為AB中點(diǎn),連接DE、CE、CD.
(1)求證:DE=CE;
(2)若∠CAB=25°,∠DBA=35°,判斷△DEC的形狀,并說(shuō)明理由;
(3)當(dāng)∠CAB+∠DBA=45°時(shí),若CD=12,取CD中點(diǎn)F,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在圖中的點(diǎn)上標(biāo)出相應(yīng)字母A、B、C,并求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1;
(3)寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( )
A. (,0) B. (2,0) C. (,0) D. (3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格,線段AB的端點(diǎn)在格點(diǎn)上.
(1)請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系xOy,使得A點(diǎn)的坐標(biāo)為(-3,-1),在此坐標(biāo)系下,B點(diǎn)的坐標(biāo)為________________;
(2)將線段BA繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得線段BC,畫(huà)出BC;在第(1)題的坐標(biāo)系下,C點(diǎn)的坐標(biāo)為__________________;
(3)在第(1)題的坐標(biāo)系下,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)O、B、C三點(diǎn),則此函數(shù)圖象的對(duì)稱(chēng)軸方程是________________.
【答案】 (-1,2) (2,0) x=1
【解析】分析:根據(jù)點(diǎn)的坐標(biāo)建立坐標(biāo)系,即可寫(xiě)出點(diǎn)的坐標(biāo).
畫(huà)出點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)連接,寫(xiě)出點(diǎn)的坐標(biāo).
用待定系數(shù)法求出函數(shù)解析式,即可求出對(duì)稱(chēng)軸方程.
詳解:(1)建立坐標(biāo)系如圖,
B點(diǎn)的坐標(biāo)為;
(2)線段BC如圖,C點(diǎn)的坐標(biāo)為
(3)把點(diǎn)代入二次函數(shù),得
解得:
二次函數(shù)解析為:
對(duì)稱(chēng)軸方程為:
故對(duì)稱(chēng)軸方程是
點(diǎn)睛:考查圖形與坐標(biāo);旋轉(zhuǎn)、對(duì)稱(chēng)變換;待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的圖象與性質(zhì).熟練掌握各個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
18
【題目】特殊兩位數(shù)乘法的速算——如果兩個(gè)兩位數(shù)的十位數(shù)字相同,個(gè)位數(shù)字相加為10,那么能立說(shuō)出這兩個(gè)兩位數(shù)的乘積.如果這兩個(gè)兩位數(shù)分別寫(xiě)作AB和AC(即十位數(shù)字為A,個(gè)位數(shù)字分別為B、C,B+C=10,A>3),那么它們的乘積是一個(gè)4位數(shù),前兩位數(shù)字是A和(A+1)的乘積,后兩位數(shù)字就是B和C的乘積.
如:47×43=2021,61×69=4209.
(1)請(qǐng)你直接寫(xiě)出83×87的值;
(2)設(shè)這兩個(gè)兩位數(shù)的十位數(shù)字為x(
(3)99991×99999=___________________(直接填結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市有一塊長(zhǎng)為(3a+b)米、寬為(2a+b)米的長(zhǎng)方形地塊,中間是邊長(zhǎng)為(a+b)米的正方形,規(guī)劃部門(mén)計(jì)劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化.
(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)
(2)求出當(dāng)a=10,b=12時(shí)的綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:∠AOB=90°,OM是∠AOB的平分線,將三角板的直角頂點(diǎn)P在射線OM上滑動(dòng),兩直角邊分別與OA、OB交于C、 D. 求證:PC=PD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點(diǎn)P.
(1)若∠B=40°,∠AEC=75°,求證:AB=BC;
(2)若∠BAC=90°,AP為△AEC邊EC上中線,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,且DE=,△ABF是△ADE的旋轉(zhuǎn)圖形
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)AF的長(zhǎng)度是多少?
(4)如果連結(jié)EF,那么△AEF是怎樣的三角形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com