【題目】如圖,頂點(diǎn)為的二次函數(shù)圖象與x軸交于點(diǎn),點(diǎn)B在該圖象上,交其對(duì)稱軸l于點(diǎn)M,點(diǎn)M、N關(guān)于點(diǎn)P對(duì)稱,連接、.
(1)求該二次函數(shù)的關(guān)系式.
(2)若點(diǎn)B在對(duì)稱軸l右側(cè)的二次函數(shù)圖象上運(yùn)動(dòng),請(qǐng)解答下列問(wèn)題:
①連接,當(dāng)時(shí),請(qǐng)判斷的形狀,并求出此時(shí)點(diǎn)B的坐標(biāo).
②求證:.
【答案】(1)二次函數(shù)的關(guān)系式為;(2)①是等腰直角三角形,此時(shí)點(diǎn)B坐標(biāo)為;②見(jiàn)解析
【解析】
(1)利用待定系數(shù)法即可得到答案;
(2)①設(shè),由點(diǎn)的對(duì)稱性得到,再由勾股定理得到答案;②設(shè)直線與x軸交于點(diǎn)D,求得直線解析式,再結(jié)合題意即可得到答案.
解:(1)∵二次函數(shù)頂點(diǎn)為
∴設(shè)頂點(diǎn)式
∵二次函數(shù)圖象過(guò)點(diǎn)
∴,解得:
∴二次函數(shù)的關(guān)系式為
(2)設(shè)
∴直線解析式為:
∵交對(duì)稱軸l于點(diǎn)M
∴當(dāng)時(shí),
∴
∵點(diǎn)M、N關(guān)于點(diǎn)P對(duì)稱
∴,
∴,即
①∵
∴
∴
解得:
∴
∴,
∴,,B
∴,
∴是等腰直角三角形,此時(shí)點(diǎn)B坐標(biāo)為.
②證明:如圖,設(shè)直線與x軸交于點(diǎn)D
∵、
設(shè)直線解析式為
∴ 解得:
∴直線:
當(dāng)時(shí),,解得:
∴
∵,軸
∴垂直平分
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】京劇臉譜是京劇藝術(shù)獨(dú)特的表現(xiàn)形式,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“紅臉”,另外一張卡片的正面圖案為“黑臉”,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻,從中隨機(jī)抽取一張,記錄圖案后放回,重新洗勻后再?gòu)闹须S機(jī)抽取一張.請(qǐng)用畫樹(shù)狀圖或列表的方法,求抽出的兩張卡片上的圖案都是“紅臉”的概率(圖案為“紅臉”的兩張卡片分別記為、,圖案為“黑臉”的卡片記為).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶渴樂(lè)自駕游公司在元旦節(jié)推出四條自駕線路,為調(diào)查客戶對(duì)各條線路的喜歡情況,微信群里做了一次“我最期待的自駕線路”問(wèn)卷調(diào)查(群里每個(gè)人都進(jìn)行了調(diào)查且只選擇一條線路),統(tǒng)計(jì)后發(fā)現(xiàn)選湘西的人數(shù)比選畢棚溝的少6人;選邛海的人數(shù)不僅比選畢棚溝的多,且為整數(shù)倍:選畢棚溝與邛海的人數(shù)之和是選擇湘西和北海的人數(shù)之和的4倍;選北海和邛海的人數(shù)之和比選湘西與畢棚溝的人數(shù)之和多22人,則該微信群里參與調(diào)查的共_____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)P在射線AC上(點(diǎn)P與點(diǎn)A、點(diǎn)C不重合),點(diǎn)D在線段BC的延長(zhǎng)線上,且AP=CD,△PCD′與△PCD關(guān)于直線AC對(duì)稱.
(1)如圖1,當(dāng)點(diǎn)P在線段AC上時(shí),
①求證:PB=PD;
②請(qǐng)求出∠BPD′的度數(shù);
(2)當(dāng)點(diǎn)P在射線AC上運(yùn)動(dòng)時(shí),請(qǐng)直接回答:
①PB=PD是否仍然成立?
②∠BPD′的度數(shù)是否發(fā)生變化?
(3)將△PCD′繞點(diǎn)P順時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過(guò)程中,PD′與PB能否重合?若能重合,請(qǐng)直接寫出旋轉(zhuǎn)的角度;若不能重合,請(qǐng)說(shuō)明理由;
(4)若AB=4,當(dāng)點(diǎn)P為AC邊的中點(diǎn)時(shí),請(qǐng)直接寫出PD'的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),對(duì)稱軸為直線,點(diǎn)的坐標(biāo)為.
(1)求該拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)為拋物線上一點(diǎn)(不與點(diǎn)重合),聯(lián)結(jié).當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,將拋物線沿平行于軸的方向向下平移,平移后的拋物線的頂點(diǎn)為點(diǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),當(dāng)時(shí),求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,路燈下,廣告標(biāo)桿AB的影子是BC,小明(用線段DE表示)的影子是EF,在M處有一棵樹(shù),它的影子是MN.
(1)請(qǐng)?jiān)趫D中畫出表示樹(shù)高的線段.(不寫作法,保留作圖痕跡)
(2)若已知點(diǎn)N、F到路燈的底部距離相等,小明身高1.6米,影長(zhǎng)EF為1.8米,樹(shù)的影長(zhǎng)MN是6米,請(qǐng)計(jì)算樹(shù)的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCD中,∠ADC=90°,AD∥BC,點(diǎn)E在BC上,點(diǎn)F在AC上,∠DFC=∠AEB.
(1)求證:△ADF∽△CAE;
(2)當(dāng)AD=8,DC=6,點(diǎn)E、F分別是BC、AC的中點(diǎn)時(shí),求BC的長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題的提出:
如果點(diǎn)P是銳角△ABC內(nèi)一動(dòng)點(diǎn),如何確定一個(gè)位置,使點(diǎn)P到△ABC的三頂點(diǎn)的距離之和PA+PB+PC的值為最小?
問(wèn)題的轉(zhuǎn)化:
(1)把ΔAPC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60度得到連接這樣就把確定PA+PB+PC的最小值的問(wèn)題轉(zhuǎn)化成確定的最小值的問(wèn)題了,請(qǐng)你利用如圖證明:
;
問(wèn)題的解決:
(2)當(dāng)點(diǎn)P到銳角△ABC的三項(xiàng)點(diǎn)的距離之和PA+PB+PC的值為最小時(shí),請(qǐng)你用一定的數(shù)量關(guān)系刻畫此時(shí)的點(diǎn)P的位置:_____________________________;
問(wèn)題的延伸:
(3)如圖是有一個(gè)銳角為30°的直角三角形,如果斜邊為2,點(diǎn)P是這個(gè)三角形內(nèi)一動(dòng)點(diǎn),請(qǐng)你利用以上方法,求點(diǎn)P到這個(gè)三角形各頂點(diǎn)的距離之和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在⊙O上,聯(lián)結(jié)CO并延長(zhǎng)交弦AB于點(diǎn)D, ,聯(lián)結(jié)AC、OB,若CD=40,AC=20.
(1)求弦AB的長(zhǎng);
(2)求sin∠ABO的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com