【題目】已知,H為射線OA上一定點,P為射線OB上一點,M為線段OH上一動點,連接PM,滿足為鈍角,以點P為中心,將線段PM順時針旋轉(zhuǎn),得到線段PN,連接ON

1)依題意補(bǔ)全圖1;

2)求證:;

3)點M關(guān)于點H的對稱點為Q,連接QP.寫出一個OP的值,使得對于任意的點M總有ON=QP,并證明.

【答案】1)如圖所示見解析;(2)見解析;(3OP=2.證明見解析.

【解析】

1)根據(jù)題意畫出圖形即可.
2)由旋轉(zhuǎn)可得∠MPN=150°,故∠OPN=150°-OPM;由∠AOB=30°和三角形內(nèi)角和180°可得∠OMP=180°-30°-OPM=150°-OPM,得證.
3)根據(jù)題意畫出圖形,以ON=QP為已知條件反推OP的長度.由(2)的結(jié)論∠OMP=OPN聯(lián)想到其補(bǔ)角相等,又因為旋轉(zhuǎn)有PM=PN,已具備一邊一角相等,過點NNCOB于點C,過點PPDOA于點D,即可構(gòu)造出PDM≌△NCP,進(jìn)而得PD=NCDM=CP.此時加上ON=QP,則易證得OCN≌△QDP,所以OC=QD.再設(shè)DM=CP=x,所以OC=OP+PC=2+x,MH=MD+DH=x+1,由于點M、Q關(guān)于點H對稱,得出DQ=DH+HQ=1+x+1=2+x,得出OC=DQ,再利用SAS得出OCN≌△QDP即可

解:(1)如圖1所示為所求.

2)設(shè)∠OPM=α
∵線段PM繞點P順時針旋轉(zhuǎn)150°得到線段PN
∴∠MPN=150°,PM=PN
∴∠OPN=MPN-OPM=150°-α
∵∠AOB=30°
∴∠OMP=180°-AOB-OPM=180°-30°-α=150°-α
∴∠OMP=OPN

3OP=2時,總有ON=QP,證明如下:
過點NNCOB于點C,過點PPDOA于點D,如圖2


∴∠NCP=PDM=PDQ=90°
∵∠AOB=30°,OP=2

DH=OH-OD=1
∵∠OMP=OPN
180°-OMP=180°-OPN
即∠PMD=NPC
PDMNCP

∴△PDM≌△NCPAAS
PD=NCDM=CP
設(shè)DM=CP=x,則OC=OP+PC=2+xMH=MD+DH=x+1
∵點M關(guān)于點H的對稱點為Q
HQ=MH=x+1
DQ=DH+HQ=1+x+1=2+x
OC=DQ
OCNQDP

∴△OCN≌△QDPSAS
ON=QP

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】岳陽市整治農(nóng)村“空心房”新模式,獲評全國改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對轄區(qū)內(nèi)“空心房”進(jìn)行整治,騰退土地1200公頃用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600公頃.

1)求復(fù)耕土地和改造土地面積各為多少公頃;

2)該地區(qū)對需改造的土地進(jìn)行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場,要求休閑小廣場總面積不超過花卉園總面積的,求休閑小廣場的總面積最多為多少公頃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點坐標(biāo)為,并與軸交于點,點是對稱軸與軸的交點.

(1)求拋物線的解析式;

(2)如圖①所示, 是拋物線上的一個動點,且位于第一象限,連結(jié)BP、AP,的面積的最大值;

(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點,求出點的坐標(biāo);并探究:軸上是否存在點,使?若存在,求點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于點兩點(點在點的左側(cè)),與軸交于點

1)如圖1,若點是直線上方拋物線上的一個動點,過點軸交直線于點,作于點,點為直線上一動點,點軸上一動點,連接,.當(dāng)最長時,求的最小值;

2)如圖2,將繞點逆時針旋轉(zhuǎn),將沿直線平移得到,直線軸交于點,連接,將 沿邊翻折得 ,連接 ,當(dāng)是等腰三角形時,求此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC中,∠ABC=90°,點DAC上,將ABD繞頂點B沿順時針方向旋轉(zhuǎn)90°后得到CBE.

(1)求∠DCE的度數(shù);

(2)當(dāng)AB=4,ADDC=13時,求DE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在邊長為l的正方形網(wǎng)格中如圖所示.

①以點C為位似中心,作出ABC的位似圖形A1B1C,使其位似比為12.且A1B1C位于點C的異側(cè),并表示出A1的坐標(biāo).

②作出ABC繞點C順時針旋轉(zhuǎn)90°后的圖形A2B2C

③在②的條件下求出點B經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種折疊臺燈,將其放置在水平桌面上,圖2是其簡化示意圖,測得其燈臂長為燈翠長為,底座厚度為根據(jù)使用習(xí)慣,燈臂的傾斜角固定為,

(1)當(dāng)轉(zhuǎn)動到與桌面平行時,求點到桌面的距離;

(2)在使用過程中發(fā)現(xiàn),當(dāng)轉(zhuǎn)到至時,光線效果最好,求此時燈罩頂端到桌面的高度(參考數(shù)據(jù):,結(jié)果精確到個位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD2AB.將矩形ABCD對折,得到折痕MN,沿著CM折疊,點D的對應(yīng)點為E,MEBC的交點為F;再沿著MP折疊,使得AMEM重合,折痕為MP,此時點B的對應(yīng)點為G.下列結(jié)論:CMP是直角三角形;ABBPPNPG;PMPF若連接PE,則△PEG∽△CMD.其中正確的個數(shù)為(  )

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廊橋是我國古老的文化遺產(chǎn)如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點、處要安裝兩盞警示燈,則這兩盞燈的水平距離____

查看答案和解析>>

同步練習(xí)冊答案