【題目】如圖,在△ABC中,∠ACB=90°,CE⊥AB于點E,AD=AC,AF平分∠CAB交CE于點F,DF的延長線交AC于點G,
求證:(1)DF∥BC;
(2)FG=FE.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)已知,利用SAS判定△ACF≌△ADF,從而得到對應角相等,再根據(jù)同位角相等兩直線平行,得到DF∥BC;
(2)已知DF∥BC,AC⊥BC,則GF⊥AC,再根據(jù)角平分線上的點到角兩邊的距離相等得到FG=EF.
(1)證明:∵AF平分∠CAB,
∴∠CAF=∠DAF.
在△ACF和△ADF中,
∵,
∴△ACF≌△ADF(SAS).
∴∠ACF=∠ADF.
∵∠ACB=90°,CE⊥AB,
∴∠ACE+∠CAE=90°,∠CAE+∠B=90°,
∴∠ACF=∠B,
∴∠ADF=∠B;
∴DF∥BC.
(2)證明:∵DF∥BC,BC⊥AC,
∴FG⊥AC.
∵FE⊥AB,
又AF平分∠CAB,
∴FG=FE.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么關于此二次函數(shù)的下列四個結論:①a+b+c<0;②c>1;③b2﹣4ac>0;④2a﹣b<0,其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某海域有A,B,C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A,B兩船發(fā)出緊急求救信號,此時B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時又位于B船的北偏東78°方向.
(1)求∠ABC的度數(shù);
(2)A船以每小時30海里的速度前去救援,問多長時間能到出事地點.(結果精確到0.01小時).
(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年秋季,長白山土特產(chǎn)喜獲豐收,某土特產(chǎn)公司組織10輛汽車裝運甲、乙、丙三種土特產(chǎn)去外地銷售,按計劃10輛車都要裝運,每輛汽車只能裝運同一種土特產(chǎn),且必須裝滿.設裝運甲種土特產(chǎn)的汽車有x輛,裝運乙種土特產(chǎn)的汽車有y輛,根據(jù)下表提供的信息,解答以下問題.
(1)裝運丙種土特產(chǎn)的車輛數(shù)為(用含x、y的式子表示);
(2)用含x、y的式子表示這10輛汽車共裝運土特產(chǎn)的噸數(shù);
(3)求銷售完裝運的這批土特產(chǎn)后所獲得的總利潤(用含x、y的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一出租車一天下午以鼓樓為出發(fā)點在東西方向運營,向東走為正,向西走為負,行車里程(單位:km)依先后次序記錄如下:.
(1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?
(2)若每千米的價格為2.4元,司機一個下午的營業(yè)額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為4cm的等邊三角形,動點P從點A出發(fā),以2cm/s的速度沿A→C→B運動,到達B點即停止運動,過點P作PD⊥AB于點D,設運動時間為x(s),△ADP的面積為y(cm2),則能夠反映y與x之間函數(shù)關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 O 在直線 AB 上,OC⊥OD,∠EDO 與∠1 互余.
(1)求證:ED//AB;
(2)OF 平分∠COD 交 DE 于點 F,若OFD=70,補全圖形,并求∠1 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求證:BE=AD;
(2)當α=90°時,取AD,BE的中點分別為點P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com