如圖,已知△ABC和△DEF是兩個(gè)邊長(zhǎng)都為1cm的等邊三角形,且B、D、C、E都在同一直線精英家教網(wǎng)上,連接AD及CF.
(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=0.3cm,△ABC沿著BE的方向以每秒1cm的速度運(yùn)動(dòng),設(shè)△ABC運(yùn)動(dòng)時(shí)間為t秒,
①當(dāng)t為何值時(shí),?ADFC是菱形?請(qǐng)說(shuō)明你的理由;
②?ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)已知條件可知AC∥DF,即可得出四邊形ADFC是平行四邊形,
(2)根據(jù)△ABC沿著BE的方向以每秒1cm的速度運(yùn)動(dòng),所以當(dāng)t=
0.3
1
秒時(shí),B與D重合,這時(shí)四邊形為菱形,
(3)若平行四邊形ADFC是矩形,則∠ADF=90°,E與B重合,得出t=1.3秒,可求出此時(shí)矩形的面積.
解答:精英家教網(wǎng)(1)證明:∵△ABC和△DEF是兩個(gè)邊長(zhǎng)都為lcm的等邊三角形,
∴AC=DF=1cm,∠ACB=∠FDE=60°,
∴AC∥DF,
∴四邊形ADFC是平行四邊形;

(2)①當(dāng)t=0.3秒時(shí),平行四邊形ADFC是菱形,理由如下:
∵△ABC沿著BE的方向以每秒1cm的速度運(yùn)動(dòng),
∴當(dāng)t=
0.3
1
秒時(shí),B與D重合,如圖所示,
精英家教網(wǎng)則AD=AE=BC=DE=DF=EF,
∴平行四邊形ADFC是菱形,
②若平行四邊形ADFC是矩形,則∠ADF=90°,
∴∠ADC=90-60=30°
同理∠DAB=30°=∠ADC,
∴BA=BD,
同理EC=EF,
∴E與B重合,
∴t=(1+0.3)÷1=1.3秒,
此時(shí),如圖,在Rt△ADF中,
∠ADF=90°,DF=1cm,AF=2cm,
AD=
22-12
=
3
cm,
∴矩形ADFC的面積=AD×DF=
3
cm2
點(diǎn)評(píng):本題考查了等邊三角形的邊關(guān)系,根據(jù)等邊三角形三邊相等,三個(gè)角相等來(lái)解答問(wèn)題,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,已知△ABC和△DEF,∠A=∠D=90°,且△ABC與△DEF不相似,問(wèn)是否存在某種直線分割,使△ABC所分割成的兩個(gè)三角形與△DEF所分割成的兩個(gè)三角形分別對(duì)應(yīng)相似?
(1)如果存在,請(qǐng)你設(shè)計(jì)出分割方案,并給出證明;如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;
(2)這樣的分割是唯一的嗎?若還有,請(qǐng)?jiān)僭O(shè)計(jì)出一種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC和△DEF是兩個(gè)邊長(zhǎng)都為10cm的等邊三角形,且B、D、C、E都在同一直線上精英家教網(wǎng),連接AD、CF.
(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=3cm,△ABC沿著BE的方向以每秒1cm的速度運(yùn)動(dòng),設(shè)△ABC運(yùn)動(dòng)時(shí)間為t秒,
①當(dāng)t為何值時(shí),?ADFC是菱形?請(qǐng)說(shuō)明你的理由;
②?ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,已知△ABC和△A″B″C″及點(diǎn)O.
(1)畫出△ABC關(guān)于點(diǎn)O對(duì)稱的△A′B′C′;
(2)若△A″B″C″與△A′B′C′關(guān)于點(diǎn)O′對(duì)稱,請(qǐng)確定點(diǎn)O′的位置;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知△ABC和兩條相交于O點(diǎn)且夾角為60°的直線m、n.
(1)畫出△ABC關(guān)于直線m的對(duì)稱△A1B1C 1,再畫出△A1B1C 1關(guān)于直線n的對(duì)稱△A2B2C 2;
(2)你認(rèn)為△A2B2C 2可視為△ABC繞著哪一點(diǎn)旋轉(zhuǎn)多少度得到的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南崗區(qū)二模)如圖,已知△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,求證:AD=CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案