如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,求證:△ABD≌△ACE.

【答案】分析:先求出∠EAC=∠DAB,再利用“邊角邊”證明即可.
解答:證明:∵∠BAC=∠DAE,…(3分)
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠EAC=∠DAB,…(4分)
在△AEC和△ADB中
∴△AEC≌△ADB(SAS).…(5分)
點評:本題考查了全等三角形的判定,推出∠EAC=∠DAB是解題的關鍵,本題圖形比較復雜,準確識圖非常重要.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC和△DEF中,AC∥DE,∠EFD與∠B互補,DE=mAC(m>1).試探索線段EF與AB的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”證明△ABC≌△ABD,則需要加條件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB邊上的中點.則DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,請說明AE=BD的理由.

查看答案和解析>>

同步練習冊答案