【題目】如圖是2019年1月份的日歷.任意選擇圖中的菱形框部分,將每個菱形框部分中去掉中間位置的數之后,相對的兩對數分別相乘,再相減,例如:9×11-3×17=48,13×15-7×21=48.不難發(fā)現(xiàn),結果都是48
(1)請證明發(fā)現(xiàn)的規(guī)律;
(2)小明說:他用一個如圖所示菱形框,框出5個數字,其中最小數與最大數的積是120,請判斷他的說法是否正確.
【答案】(1)見解析;(2)小明的說法不正確,理由見解析
【解析】
(1)設中間的數為a,則另外4個數分別為(a-7),(a-1),(a+1),(a+7),利用相對的兩對數分別相乘再相減,可證出規(guī)律成立;
(2)設這5個數中最大數為x,則最小數為(x-14),根據最小數與最大數的積是120,即可得出關于x的一元二次方程,解之取其正值,由該值在第一列可知不符合題意,進而可得出小明的說法不正確.
(1)證明:設中間的數為a,則另外4個數分別為(a-7),(a-1),(a+1),(a+7),
∴(a-1)(a+1)-(a-7)(a+7)=a2-1-(a2-49)=48.
(2)解:設這5個數中最大數為x,則最小數為(x-14),
依題意,得:x(x-14)=120,
解得:x1=20,x2=-6(不合題意,舍去).
∵20在第一列,
∴不符合題意,
∴小明的說法不正確
科目:初中數學 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為3元/個的某品牌粽子,根據市場預測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進價的200%,請你利用所學知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數的圖象與性質.
小東根據學習函數的經驗,對函數的圖象與性質進行了探究.
下面是小東的探究過程,請補充完成:
(1)化簡函數解析式,當時,___________,當時____________;
(2)根據(1)中的結果,請在所給坐標系中畫出函數的圖象;備用圖
(3)結合畫出的函數圖象,解決問題:若關于的方程只有一個實數根,直接寫出實數的取值范圍:___________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車專賣店經銷某種型號的汽車.已知該型號汽車的進價為萬元/輛,經銷一段時間后發(fā)現(xiàn):當該型號汽車售價定為萬元/輛時,平均每周售出輛;售價每降低萬元,平均每周多售出輛.
(1)當售價為萬元/輛時,平均每周的銷售利潤為___________萬元;
(2)若該店計劃平均每周的銷售利潤是萬元,為了盡快減少庫存,求每輛汽車的售價.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性消費滿200元,就可以在箱子里先后摸出兩個小球(每一次摸出后不放回).某顧客剛好消費200元,則該顧客所獲得購物券的金額超過30元的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2, AD=2,動點P從點A出發(fā)向終點D運動,連BP,并過點C作CH⊥BP,垂足為H.①△ABP∽△HCB;②AH的最小值為-; ③在運動過程中,BP掃過的面積始終等于CH掃過的面積:④在運動過程中,點H的運動路徑的長為, 其中正確的有( )
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )
A. ①②③B. ①③C. ①④D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,⊙O過正方形ABCD的頂點A、D且與邊BC相切于點E,分別交AB、DC于點M、N.動點P在⊙O或正方形ABCD的邊上以每秒一個單位的速度做連續(xù)勻速運動.設運動的時間為x,圓心O與P點的距離為y,圖2記錄了一段時間里y與x的函數關系,在這段時間里P點的運動路徑為( )
A. 從D點出發(fā),沿弧DA→弧AM→線段BM→線段BC
B. 從B點出發(fā),沿線段BC→線段CN→弧ND→弧DA
C. 從A點出發(fā),沿弧AM→線段BM→線段BC→線段CN
D. 從C點出發(fā),沿線段CN→弧ND→弧DA→線段AB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-1,0),B(3,0),C(0,-3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數解析式;
(2)設點M是直線l上的一個動點,當點M到點A,點C的距離之和最短時,求點M的坐標;
(3)在拋物線上是否存在點N,使S⊿ABN=S⊿ABC,若存在,求出點N的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com