【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分別是AB、AC的中點,動點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時動點Q從點B出發(fā),沿BF方向勻速運動,速度為2cm/s,連接PQ,設(shè)運動時間為ts(0<t<1),則當t=___時,△PQF為等腰三角形.
【答案】2﹣或.
【解析】
由勾股定理和含30°角的直角三角形的性質(zhì)先分別求出AC和BC,然后根據(jù)題意把PF和FQ表示出來,當△PQF為等腰三角形時分三種情況討論即可.
解:∵∠ABC=90°,∠ACB=30°,AB=2cm,
∴AC=2AB=4cm,BC==2,
∵E、F分別是AB、AC的中點,
∴EF=BC=cm,BF=AC=2cm,
由題意得:EP=t,BQ=2t,
∴PF=﹣t,FQ=2﹣2t,
分三種情況:
①當PF=FQ時,如圖1,△PQF為等腰三角形.
則﹣t=2﹣2t,
t=2﹣ ;
②如圖2,當PQ=FQ時,△PQF為等腰三角形,過Q作QD⊥EF于D,
∴PF=2DF,
∵BF=CF,
∴∠FBC=∠C=30°,
∵E、F分別是AB、AC的中點,
∴EF∥BC,
∴∠PFQ=∠FBC=30°,
∵FQ=2﹣2t,
∴DQ=FQ=1﹣t,
∴DF= (1﹣t),
∴PF=2DF=2(1﹣t),
∵EF=EP+PF= ,
∴t+2(1﹣t)= ,
t= ;
③因為當PF=PQ時,∠PFQ=∠PQF=30°,
∴∠FPQ=120°,
而在P、Q運動過程中,∠FPQ最大為90°,所以此種情況不成立;
綜上,當t=2﹣或時,△PQF為等腰三角形.
故答案為:2﹣ 或 .
科目:初中數(shù)學 來源: 題型:
【題目】某中學新建了一棟7層的教學大樓,每層樓有8間教室,進出這棟大樓共有八道門,其中四道正門大小相同,四道側(cè)門大小也相同.安全檢查中,對八道門進行了測試:當同時開啟一道正門和兩道側(cè)門時,2分內(nèi)可以通過560名學生;當同時開啟一道正門和一道側(cè)門時,4分內(nèi)可以通過800名學生.
(1)平均每分內(nèi)一道正門和一道側(cè)門分別可以通過多少名學生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率將降低30%.安全檢查規(guī)定:在緊急情況下全大樓的學生應(yīng)在5分內(nèi)通過這八道門安全撤離,假設(shè)這棟教學大樓每間教室最多有45名學生,問建造的這八道門是否符合安全規(guī)定?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小有什么數(shù)量關(guān)系?請說明理由。(要求:畫出圖形,并寫出已知,求證,證明過程)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,自來水廠A和村莊B在小河l的兩側(cè),現(xiàn)要在A,B間鋪設(shè)一條輸水管道.為了搞好工程預(yù)算,需測算出A,B間的距離.一小船在點P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達點Q處,測得A位于北偏西49°方向,B位于南偏西41°方向.
(1)線段BQ與PQ是否相等?請說明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標為( )
A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系,O為坐標原點,點A(﹣1,0),點B(0, ).
(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點O順時針得△A′OB′,當A′恰好落在AB邊上時,設(shè)△AB′O的面積為S1 , △BA′O的面積為S2 , S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為3的正方形置于平面直角坐標系第一象限,使邊落在軸的正半軸上,直線:經(jīng)過點且與軸交于點.
(1)求點坐標;
(2)求的面積;
(3)若直線與軸交于點,在軸上是否存在點,使得是直角三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com