(本題滿(mǎn)分10分)
(1)觀察與發(fā)現(xiàn)

小明將三角形紙片沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖①);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到(如圖②).小明認(rèn)為是等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.

(2)實(shí)踐與運(yùn)用
將矩形紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,折痕為BE(如圖③);再沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)D落在BE上的點(diǎn)處,折痕為EG(如圖④);再展平紙片(如圖⑤).求圖⑤中的大小.

解:(1)同意.如圖,設(shè)交于點(diǎn).由折疊知,平分,所以

又由折疊知,,
所以
所以.所以,
為等腰三角形.····································· (5分)
(2)由折疊知,四邊形是正方形,,所以.又由折疊知,,所以
從而.   (10分)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分10分)

如圖,已知OA⊥OB,OA=8,OB=6,以AB為邊作矩形ABCD,使AD=a,過(guò)點(diǎn)D作DE垂直O(jiān)A的延長(zhǎng)線交于點(diǎn)E.
(1)求證:△OAB∽△EDA;                               
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?并求出此時(shí)點(diǎn)C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·貴港)(本題滿(mǎn)分10分)
隨著人們經(jīng)濟(jì)收入的不斷提高及汽車(chē)產(chǎn)業(yè)的快速發(fā)展,汽車(chē)已越來(lái)越多地進(jìn)入普通家庭.據(jù)某市交通部門(mén)統(tǒng)計(jì),2008年底該市汽車(chē)擁有量為75萬(wàn)輛,而截止到2010年底,該市的汽車(chē)擁有量已達(dá)108萬(wàn)輛.
(1)求2008年底至2010年底該市汽車(chē)擁有量的年平均增長(zhǎng)率;
(2)為了保護(hù)城市環(huán)境,緩解汽車(chē)擁堵?tīng)顩r,該市交通部門(mén)擬控制汽車(chē)總量,要求到2012
年底全市汽車(chē)擁有量不超過(guò)125.48萬(wàn)輛;另?yè)?jù)統(tǒng)計(jì),從2011年初起,該市此后每年報(bào)廢的
汽車(chē)數(shù)量是上年底汽車(chē)擁有量的10%假設(shè)每年新增汽車(chē)數(shù)量相同,請(qǐng)你估算出該市從2011
年初起每年新增汽車(chē)數(shù)量最多不超過(guò)多少萬(wàn)輛.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省鹽城市九年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:選擇題

(本題滿(mǎn)分10分)如圖,小明家在A處,門(mén)前有一口池塘,隔著池塘有一條公路l,ABAl的小路. 現(xiàn)新修一條路AC到公路l. 小明測(cè)量出∠ACD=30º,∠ABD=45º,BC=50m. 請(qǐng)你幫小明計(jì)算他家到公路l的距離AD的長(zhǎng)度(精確到0.1m;參考數(shù)據(jù):,).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省海陵區(qū)九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分10分)如圖,BD是直徑,過(guò)⊙O上一點(diǎn)A作⊙O切線交DB延長(zhǎng)線于P,過(guò)B點(diǎn)作BC∥PA交⊙O于C,連接AB、AC ,

1.(1)求證:AB = AC

2.(2)若PA= 10 ,PB = 5 ,求⊙O半徑.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省九年級(jí)下學(xué)期3月考數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分10分)如圖,已知二次函數(shù)的圖象的頂點(diǎn)為.二次函數(shù)的圖象與軸交于原點(diǎn)及另一點(diǎn),它的頂點(diǎn)在函數(shù)的圖象的對(duì)稱(chēng)軸上.

(1)求點(diǎn)與點(diǎn)的坐標(biāo);

(2)當(dāng)四邊形為菱形時(shí),求函數(shù)的關(guān)系式.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案