如圖,在Rt△ABC中,∠C=90°,AC=6,∠A的平分線AD=4
3
.求△ABD的面積.
過D點作DE⊥AB于E,
∵∠C=90°,AD是∠A的平分線,
∴DE=CD.
在Rt△ACD中,
∵AC=6,AD=4
3

∴cos∠CAD=
AC
AD
=
6
4
3
=
3
2

∴∠CAD=30°.
∴CD=
1
2
AD=2
3

∴DE=2
3

在Rt△ABC中,
∵∠CAB=2∠CAD=60°,
∴∠B=30°.
∴AB=2AC=12.
∴S△ABD=
1
2
AB×DE=
1
2
×12×2
3
=12
3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

(1)用計算器計算:3sin38°-
2
≈______.
(結果保留三個有效數(shù)字)
(2)小明在樓頂點A處測得對面大樓樓頂點C處的仰角為52°,樓底點D處的俯角為13度.若兩座樓AB與CD相距60米,則樓CD的高度約為______米.(結果保留三個有效數(shù)字,參考數(shù)據(jù):sin13°≈0.2250,cos13°≈0.9744,tan13°≈0.2309,sin52°≈0.7880,cos52°≈0.6157,tan52°≈1.2799)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,小明在坡度為1:2.4的山坡AB上的A處測得大樹CD頂端D的仰角為45°,CD垂直于水平面,測得坡面AB長為13米,BC長為9米,A、B、C、D在一個平面內(nèi),求樹高CD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

小明沿著坡角為30°的坡面向下走了2米,那么他下降( 。
A.1米B.
3
C.2
3
D.
2
3
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,cosB=
2
2
,sinC=
3
5
,AC=5,則△ABC的面積是( 。
A.
21
2
B.12C.14D.21

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,劉紅同學為了測量某塔的高度,她先在A處測得塔頂C的仰角為30°,再向塔的方向直行35米到達B處,又測得塔頂C的仰角為60°,如果測角儀的高度為1.5米,請你幫助劉紅計算出塔的高度(結果精確到0.1米).(
3
≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

建于明洪武七年(1374年),高度33米的光岳樓是目前我國現(xiàn)存的最高大、最古老的樓閣之一(如圖①).喜愛數(shù)學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在離水面高度為4米的岸上用繩子拉船靠岸,開始時繩子與水面的夾角為30°.
求(1)繩子至少有多長?
(2)若此人以每秒0.5米收繩.問:6秒后船向岸邊大約移動了多少米?(參考數(shù)據(jù):
3
≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在一次課外實踐活動中,同學們要知道校園內(nèi)A、B兩處的距離,但無法直接測得.已知校園內(nèi)A、B、C三點形成的三角形如圖所示,現(xiàn)測得AC=6m,BC=14m,∠CAB=60°,請計算A、B兩處之間的距離.

查看答案和解析>>

同步練習冊答案