如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結(jié)論有    .(填序號)
【答案】分析:①先證明△ABD為等邊三角形,根據(jù)“SAS”證明△AED≌△DFB;
②證明∠BGE=60°=∠BCD,從而得點(diǎn)B、C、D、G四點(diǎn)共圓,因此∠BGC=∠DGC=60°,過點(diǎn)C作CM⊥GB于M,CN⊥GD于N.證明△CBM≌△CDN,所以S四邊形BCDG=S四邊形CMGN,易求后者的面積.
③過點(diǎn)F作FP∥AE于P點(diǎn),根據(jù)題意有FP:AE=DF:DA=1:3,則FP:BE=1:6=FG:BG,即BG=6GF.
解答:解:①∵ABCD為菱形,∴AB=AD.
∵AB=BD,∴△ABD為等邊三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB,故本小題正確;

②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴點(diǎn)B、C、D、G四點(diǎn)共圓,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
過點(diǎn)C作CM⊥GB于M,CN⊥GD于N.
則△CBM≌△CDN,(AAS)
∴S四邊形BCDG=S四邊形CMGN
S四邊形CMGN=2S△CMG,
∵∠CGM=60°,
∴GM=CG,CM=CG,
∴S四邊形CMGN=2S△CMG=2××CG×CG=CG2,故本小題正確;

③過點(diǎn)F作FP∥AE于P點(diǎn).                  
∵AF=2FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=2AE,
∴FP:BE=1:6=FG:BG,
即BG=6GF,故本小題正確.
綜上所述,正確的結(jié)論有①②③.
故答案為:①②③.
點(diǎn)評:此題綜合考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),全等三角形的判定和性質(zhì),作出輔助線構(gòu)造出全等三角形,把不規(guī)則圖形的面轉(zhuǎn)化為兩個全等三角形的面積是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點(diǎn),P為對角線BD上任意一點(diǎn),AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動點(diǎn)(不與點(diǎn)A重合),延長ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時,四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點(diǎn)E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案