17.已知a-b=2,則多項式3a-3b-2的值是4.

分析 把a-b=2代入多項式3a-3b-2,求出算式的值是多少即可.

解答 解:∵a-b=2,
∴3a-3b-2
=3(a-b)-2
=3×2-2
=6-2
=4
故答案為:4.

點評 此題主要考查了代數(shù)式求值問題,要熟練掌握,求代數(shù)式的值可以直接代入、計算.如果給出的代數(shù)式可以化簡,要先化簡再求值.題型簡單總結(jié)以下三種:①已知條件不化簡,所給代數(shù)式化簡;②已知條件化簡,所給代數(shù)式不化簡;③已知條件和所給代數(shù)式都要化簡.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.解方程組$\left\{\begin{array}{l}{2x-y+z=3,①}\\{3x+4y-z=8,②}\\{x+y-2z=-3,③}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.下列計算正確的是( 。
A.2-3=-8B.20=1C.a2•a3=a6D.a2+a3=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.20170017用科學(xué)記數(shù)法表示為2.02×107(精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.已知如圖,拋物線經(jīng)過點A(-1,0)、B(3,0)、C(0,2)三點,
(1)求拋物線的解析式;
(2)動點M在拋物線的對稱軸上,當△AMC的周長最小時,求點M的坐標;
(3)點P是在第一象限內(nèi)拋物線上的一動點,問點P在何處時△BCP的面積最大?最大面積是多少?并寫出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.以下兩個問題,任選其一作答.
如圖,OD是∠AOC的平分線,OE是∠BOC的平分線.
問題一:若∠AOC=36°,∠BOC=136°,求∠DOE的度數(shù).
問題二:若∠AOB=100°,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面直角坐標系中,O為坐標原點,Rt△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y1=$\frac{{k}_{1}}{x}$(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AB=3.
(1)求反比例函數(shù)y1=$\frac{{k}_{1}}{x}$(x>0)的解析式;
(2)設(shè)經(jīng)過C,D兩點的一次函數(shù)解析式為y2=k2x+b,求出其解析式,并根據(jù)圖象直接寫出在第一象限內(nèi),當y2>y1時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.列方程解應(yīng)用題
我國元朝朱世杰所著的《算學(xué)啟蒙》(1299年)一書,有一道題目是:“今有良馬日行二百四十里,駑馬日行一百五十里.駑馬先行一十二日,問良馬幾何日追及之.”
譯文是:跑得快的馬每天走240里,跑得慢的馬每天走150里.慢馬先走12天,快馬幾天可以追上慢馬?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.已知:二次函數(shù)y=ax 2+bx+c(a≠0)的圖象如圖所示.請你根據(jù)圖象提供的信息,求出這條拋物線的表達式.

查看答案和解析>>

同步練習(xí)冊答案