如圖,點A、B坐標分別為(0,2)、(-1,0),將△ABC向下平移4個單位,得到△A′B′C′,再把△A′B′C′繞點C′順時針旋轉(zhuǎn)90°,得到△A″B″C′.
(1)在所給的圖中畫出直角坐標系,并畫出△A′B′C′和△A″B″C′(不要求寫畫法);
(2)寫出點C′的坐標是______;
(3)求AA″的長.
(1)如圖所示:

(2)∵點A、B坐標分別為(0,2)、(-1,0),
∴點C′的坐標是:(2,0);

(3)∵△ABC向下平移4個單位,
∴AA″=4.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC中,∠C=50°,將△ABC繞著點A順時針旋轉(zhuǎn)到△ADE的位置,此時,點E正好落在邊BC上,那么∠BED=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知兩個全等直角三角形的直角頂點及一條直角邊重合,將△ABC繞點C按順時針方向旋轉(zhuǎn)到△A′CB′的位置,其中A′C交直線AD于點E,A′B′分別交直線AD,AC于點F,G.則旋轉(zhuǎn)后的圖中,全等三角形共有( 。
A.2對B.3對C.4對D.5對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,五角星是由左邊“基本圖案”繞______而成的.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,△ABC,△ADE為等腰直角三角形,∠ACB=∠AED=90°.
(1)如圖1,點E在AB上,點D與C重合,F(xiàn)為線段BD的中點.則線段EF與FC的數(shù)量關(guān)系是______;∠EFD的度數(shù)為______;
(2)如圖2,在圖1的基礎(chǔ)上,將△ADE繞A點順時針旋轉(zhuǎn)到如圖2的位置,其中D、A、C在一條直線上,F(xiàn)為線段BD的中點.則線段EF與FC是否存在某種確定的數(shù)量關(guān)系和位置關(guān)系?證明你的結(jié)論;
(3)若△ADE繞A點任意旋轉(zhuǎn)一個角度到如圖③的位置,F(xiàn)為線段BD的中點,連接EF、FC,請你完成圖3,并直接寫出線段EF與FC的關(guān)系(無需證明).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△OAB繞點O逆時針旋轉(zhuǎn)80°到△OCD的位置,已知∠AOB=45°,則∠AOD等于( 。
A.55°B.45°C.40°D.35°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,若將△ABC繞點O順時針旋轉(zhuǎn)180°后得到△A′B′C′.畫出△A′B′C′,并寫出點A′、B′、C′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在Rt△ABC中,AC=BC,點D為AB中點.∠GDH=90°,∠GDH繞點D旋轉(zhuǎn),DG,DH分別與邊AC,BC交于E,F(xiàn)兩點.下列結(jié)論:①AE+BF=AC,②AE2+BF2=EF2,③S四邊形CEDF=
1
2
S△ABC,④△DEF始終為等腰直角三角形.其中正確的是( 。
A.①②③④B.①②③C.①④D.②③

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是單位長度為1的網(wǎng)格.
(1)在圖1中畫出一個邊長為
5
的線段;
(2)在圖2中畫出以格點為頂點且面積為5的正方形;
(3)在圖3中畫出三角形ABC繞點A逆時針旋轉(zhuǎn)90°后的三角形AB1C1

查看答案和解析>>

同步練習冊答案