【題目】如圖所示,OA⊥OC,OB⊥OD,下面結(jié)論中,其中說法正確的是( )
①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④
【答案】C
【解析】由題意可知,OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.同時(shí),OB⊥OD,所以∠BOD=90°,即∠COD+∠BOC=90°.依次,可以判定∠AOB=∠COD,所以①正確.又因?yàn)椴荒芡茢喑觥螦OB與∠COD的具體角度,所以②不正確.∠AOD=∠AOB+∠BOC+∠COD,所以∠BOC+∠AOD=∠BOC+∠AOB+∠BOC+∠COD=90°+90°=180°.因?yàn)椤螦OB=∠COD,所以∠AOC-∠COD=∠AOC-∠AOB=∠BOC,所以④正確.為此,選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解垂線的性質(zhì)的相關(guān)知識(shí),掌握垂線的性質(zhì):1、過一點(diǎn)有且只有一條直線與己知直線垂直.2、垂線段最短.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①一條直線有且只有一條垂線;②畫出點(diǎn)P到直線l的距離;③兩條直線相交就是垂直;④線段和射線也有垂線,其中正確的有_____;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法:
①過一點(diǎn)有且只有一條直線與已知直線平行;
②在同一平面內(nèi),兩條不相交的線段是平行線段;
③相等的角是對(duì)頂角;
④在同一平面內(nèi),若直線AB∥CD,直線AB與EF相交,則CD與EF相交.
其中,錯(cuò)誤的是__________________________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=BC,∠B=120°,AB的垂直平分線交AC于點(diǎn)D,若AC=6,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個(gè)動(dòng)點(diǎn)(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點(diǎn)D,射線PD交射線CA于點(diǎn)E.
(1)若點(diǎn)E在線段CA的延長(zhǎng)線上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當(dāng)BP=時(shí),試說明射線CA與⊙P是否相切.
(3)連接PA,若S△APE=S△ABC,求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(a≠0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com