某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于50%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫(xiě)出銷(xiāo)售單價(jià)x的取值范圍.
(2)若銷(xiāo)售該服裝獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)為多少元時(shí),可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(3)若獲得利潤(rùn)不低于1200元,試確定銷(xiāo)售單價(jià)x的范圍.
【答案】分析:(1)由題意可知銷(xiāo)售單價(jià)x的取值范圍為:大于等于成本,小于等于成本×(1+50%).
(2)根據(jù)利潤(rùn)=(售價(jià)-成本)×銷(xiāo)售量列出函數(shù)關(guān)系式,
(3)令函數(shù)關(guān)系式W=1200,解得x,然后進(jìn)行討論.
解答:解:(1)60≤x≤90;        …(3分)

(2)W=(x-60)(-x+140),…(4分)
=-x2+200x-8400,
=-(x-100)2+1600,…(5分)
拋物線的開(kāi)口向下,∴當(dāng)x<100時(shí),W隨x的增大而增大,
而60≤x≤90,∴當(dāng)x=90時(shí),W=-(90-100)2+1600=1500.     
∴當(dāng)銷(xiāo)售單價(jià)定為90元時(shí),可獲得最大利潤(rùn),最大利潤(rùn)是1500元.    

(3)由W=1200,得1200=-x2+200x-8400,
整理得,x2-200x+9600=0,
解得,x1=80,x2=120,…(11分)
可知要使獲得利潤(rùn)不低于1200元,銷(xiāo)售單價(jià)應(yīng)在80元到120元之間,
而60≤x≤90,
所以,銷(xiāo)售單價(jià)x的范圍是80≤x≤90.
點(diǎn)評(píng):本題主要考查二次函數(shù)的應(yīng)用,根據(jù)利潤(rùn)=(售價(jià)-成本)×銷(xiāo)售量列出函數(shù)關(guān)系式,求最值,運(yùn)用二次函數(shù)解決實(shí)際問(wèn)題,比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)試銷(xiāo)一種成本為50元/件的T恤,規(guī)定試銷(xiāo)期間單價(jià)不低于成本單價(jià),又獲利不得高于50%.經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元/件)符合一次函數(shù)關(guān)系,試銷(xiāo)數(shù)據(jù)如下表:
售價(jià)(元/件)  55 60 70
 銷(xiāo)量(件) 75 70 60
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為ω元,試寫(xiě)出利潤(rùn)ω與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•如東縣一模)某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;
(3)銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于50%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫(xiě)出銷(xiāo)售單價(jià)x的取值范圍.
(2)若銷(xiāo)售該服裝獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)為多少元時(shí),可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄂爾多斯)某商場(chǎng)試銷(xiāo)一種成本為每件60元的T恤,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于40%.經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(2)若商場(chǎng)銷(xiāo)售這種T恤獲得利潤(rùn)為W(元),求出利潤(rùn)W(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;并求出當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于50%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫(xiě)出銷(xiāo)售單價(jià)x的取值范圍.
(2)若銷(xiāo)售該服裝獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)為多少元時(shí),可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(3)若獲得利潤(rùn)不低于1200元,試確定銷(xiāo)售單價(jià)x的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案