【題目】已知,AB是⊙O的直徑,點(diǎn)P在弧AB上(不含點(diǎn)A、B),把△AOP沿OP對(duì)折,點(diǎn)A的對(duì)應(yīng)點(diǎn)C恰好落在⊙O上.
(1)當(dāng)P、C都在AB上方時(shí)(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);
(2)當(dāng)P在AB上方而C在AB下方時(shí)(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;
(3)當(dāng)P、C都在AB上方時(shí)(如圖3),過C點(diǎn)作CD⊥直線AP于D,且CD是⊙O的切線,證明:AB=4PD.
【答案】(1)平行(2)成立(3)AB=4PD
【解析】
試題分析:(1)PO與BC的位置關(guān)系是平行;
(2)(1)中的結(jié)論成立,理由為:由折疊可知三角形APO與三角形CPO全等,根據(jù)全等三角形的對(duì)應(yīng)角相等可得出∠APO=∠CPO,再由OA=OP,利用等邊對(duì)等角得到∠A=∠APO,等量代換可得出∠A=∠CPO,又根據(jù)同弧所對(duì)的圓周角相等得到∠A=∠PCB,再等量代換可得出∠CPO=∠PCB,利用內(nèi)錯(cuò)角相等兩直線平行,可得出PO與BC平行;
(3)由CD為圓O的切線,利用切線的性質(zhì)得到OC垂直于CD,又AD垂直于CD,利用平面內(nèi)垂直于同一條直線的兩直線平行得到OC與AD平行,根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到∠APO=∠COP,再利用折疊的性質(zhì)得到∠AOP=∠COP,等量代換可得出∠APO=∠AOP,再由OA=OP,利用等邊對(duì)等角可得出一對(duì)角相等,等量代換可得出三角形AOP三內(nèi)角相等,確定出三角形AOP為等邊三角形,根據(jù)等邊三角形的內(nèi)角為60°得到∠AOP為60°,由OP平行于BC,利用兩直線平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC為等邊三角形,可得出∠COB為60°,利用平角的定義得到∠POC也為60°,再加上OP=OC,可得出三角形POC為等邊三角形,得到內(nèi)角∠OCP為60°,可求出∠PCD為30°,在直角三角形PCD中,利用30°所對(duì)的直角邊等于斜邊的一半可得出PD為PC的一半,而PC等于圓的半徑OP等于直徑AB的一半,可得出PD為AB的四分之一,即AB=4PD,得證.
試題解析:(1)PO與BC的位置關(guān)系是PO∥BC;
(2)(1)中的結(jié)論P(yáng)O∥BC成立,理由為:
由折疊可知:△APO≌△CPO,
∴∠APO=∠CPO,
又∵OA=OP,
∴∠A=∠APO,
∴∠A=∠CPO,
又∵∠A與∠PCB都為所對(duì)的圓周角,
∴∠A=∠PCB,
∴∠CPO=∠PCB,
∴PO∥BC;
(3)∵CD為圓O的切線,
∴OC⊥CD,又AD⊥CD,
∴OC∥AD,
∴∠APO=∠COP,
由折疊可得:∠AOP=∠COP,
∴∠APO=∠AOP,
又OA=OP,∴∠A=∠APO,
∴∠A=∠APO=∠AOP,
∴△APO為等邊三角形,
∴∠AOP=60°,
又∵OP∥BC,
∴∠OBC=∠AOP=60°,又OC=OB,
∴△BCO為等邊三角形,
∴∠COB=60°,
∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,
∴△POC也為等邊三角形,
∴∠PCO=60°,PC=OP=OC,
又∵∠OCD=90°,
∴∠PCD=30°,
在Rt△PCD中,PD=PC,
又∵PC=OP=AB,
∴PD=AB,即AB=4PD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)2×(﹣5)+22﹣3+(﹣ )
(2)﹣22×(﹣ )+(﹣8)÷(﹣ )3﹣(﹣1)2017
(3)先化簡,再求值:5a2﹣2b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a= ,b=﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的箱子里裝有紅色、藍(lán)色、黃色的球共20個(gè),除顏色外,形狀、大小、質(zhì)地等完全相同,小明通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn)摸到紅色、黃色球的頻率分別穩(wěn)定在10%和15%,則箱子里藍(lán)色球的個(gè)數(shù)很可能是 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”.
如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)(1)班要從班級(jí)里數(shù)學(xué)成績較優(yōu)秀的甲、乙兩位學(xué)生中選拔一人參加“全國初中數(shù)學(xué)聯(lián)賽”,為此,數(shù)學(xué)老師對(duì)兩位同學(xué)進(jìn)行了輔導(dǎo),并在輔導(dǎo)期間測(cè)驗(yàn)了6次,測(cè)驗(yàn)成績?nèi)缦卤?單位:分):
次數(shù),1, 2, 3, 4, 5, 6
甲:79,78,84,81,83,75
乙:83,77,80,85,80,75
利用表中數(shù)據(jù),解答下列問題:
(1)計(jì)算甲、乙測(cè)驗(yàn)成績的平均數(shù).
(2)寫出甲、乙測(cè)驗(yàn)成績的中位數(shù).
(3)計(jì)算甲、乙測(cè)驗(yàn)成績的方差.(結(jié)果保留小數(shù)點(diǎn)后兩位)
(4)根據(jù)以上信息,你認(rèn)為老師應(yīng)該派甲、乙哪名學(xué)生參賽?簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知一次函數(shù)y=kx+b的圖象經(jīng)過A(0,1),B(2,0)兩點(diǎn),則當(dāng)x_____時(shí),y≤0.
(2)如圖是一次函數(shù)y=kx+b的圖象,則關(guān)于x的不等式kx+b>0的解為______.
(3)若y關(guān)于x的一次函數(shù)y=mx+n的圖象不經(jīng)過第四象限,則m____0,n____0.
(4)設(shè)正比例函數(shù)y=mx的圖象經(jīng)過點(diǎn)A(m,4),且函數(shù)值y隨x的增大而減小,則m=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A、O、B三點(diǎn)在同一直線上,OE、OD分別平分∠AOC、∠BOC.
(1)求∠EOD的度數(shù);
(2)若∠AOE=50°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正比例函數(shù)y=(k-3)x的圖象經(jīng)過一、三象限,那么k的取值范圍是( )
A. k>0 B. k>3 C. k<0 D. k<3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com