已知拋物線y=-2x2+4x+m.
(1)當(dāng)m為何值時(shí),拋物線與x軸有且只有一個(gè)交點(diǎn)?
(2)若該拋物線上兩點(diǎn)A(x1,y1),B(x2,y2)的橫坐標(biāo)滿足x1>x2>2,試比較y1與y2的大。
【答案】分析:(1)先求出△的值,再根據(jù)△的值判斷出拋物線與x軸的交點(diǎn)問題即可;
(2)把拋物線y=-2x2+4x+m化為頂點(diǎn)式的形式,求出其對(duì)稱軸方程,判斷出x1、x2所在的位置,再由拋物線的性質(zhì)解答即可.
解答:解:(1)∵拋物線與x軸有且只有一個(gè)交點(diǎn),
∴△=42-4×(-2)m=16+8m=0,解得m=-2;
(2)∵原拋物線可化為y=-2(x-1)2+m-2,
∴拋物線的對(duì)稱軸方程為x=1,
∵x1>x2>2>1,
∴A,B在對(duì)稱軸的右側(cè),
∵a=-2<0,
∴拋物線的開口向下,在對(duì)稱軸的右側(cè)y隨x的增大而減小,
∵x1>x2>2,
∴y1<y2
故答案為:m=-2,y1<y2
點(diǎn)評(píng):本題考查的是拋物線與x軸的交點(diǎn)問題及拋物線的性質(zhì),熟練掌握二次函數(shù)的有關(guān)知識(shí)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-2x-8.
(1)試說明該拋物線與x軸一定有兩個(gè)交點(diǎn).
(2)若該拋物線與x軸的兩個(gè)交點(diǎn)分別為A、B(A在B的左邊),且它的頂點(diǎn)為P,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-2x+a(a<0)與y軸相交于點(diǎn)A,頂點(diǎn)為M.直線y=
12
x-a分別與x軸,y軸相交于B,C兩點(diǎn),并且與直線AM相交于點(diǎn)N.
(1)試用含a的代數(shù)式分別表示點(diǎn)M與N的坐標(biāo);
(2)如圖,將△NAC沿y軸翻折,若點(diǎn)N的對(duì)應(yīng)點(diǎn)N′恰好落在拋物線上,AN′與x軸交于點(diǎn)D,連接CD,求a的值和四邊形ADCN的面積;
(3)在拋物線y=x2-2x+a(a<0)上是否存在一點(diǎn)P,使得以P,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,試說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=2x2-4x+n與x軸交于不同的兩點(diǎn)A、B,其頂點(diǎn)是C,點(diǎn)D是拋物線的對(duì)稱軸與x軸精英家教網(wǎng)的交點(diǎn).
(1)求實(shí)數(shù)n的取值范圍;
(2)求頂點(diǎn)C的坐標(biāo)和線段AB的長(zhǎng)度(用含有m的式子表示);
(3)若直線y=
2
x+1
分別交x軸、y軸于點(diǎn)E、F,問△BDC與△EOF是否有可能全等?如果可能,請(qǐng)證明;如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-2x-3與x軸交于A,B兩點(diǎn),且A在B的左邊,頂點(diǎn)為C.
(1)求A,B,C各點(diǎn)的坐標(biāo),并畫出拋物線圖象的示意圖;
(2)根據(jù)圖象示意圖,請(qǐng)直接寫出:當(dāng)x取什么值時(shí),①y>0;②y<0.
(3)若點(diǎn)P在拋物線上,且S△PAB=8,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=2x2+2x-12與x軸的交點(diǎn)是A,B,拋物線的頂點(diǎn)是C,則△ABC的面積是
125
4
125
4

查看答案和解析>>

同步練習(xí)冊(cè)答案