【題目】如圖,△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點(diǎn)D,過點(diǎn)D作DE∥BC交AC的延長線于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長.
【答案】
(1)解:DE與⊙O相切,
理由:連接DO并延長到圓上一點(diǎn)N,交BC于點(diǎn)F,
∵AD平分∠BAC交⊙O于點(diǎn)D,
∴∠BAD=∠DAC,
∴ ,
∴DO⊥BC,
∵DE∥BC,
∴∠EDO=90°,
∴DE與⊙O相切
(2)解:連接AO并延長到圓上一點(diǎn)M,連接BM,
∵BC∥DE,
∴∠ACB=∠E=60°,
∴∠M=60°,
∵⊙O的半徑為5,
∴AM=10,
∴BM=5,則AB= =5 .
【解析】(1)利用垂徑定理的推論結(jié)合平行線的性質(zhì)得出∠EDO=90°,進(jìn)而得出答案;(2)結(jié)合已知利用圓周角定理以及勾股定理得出AB的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內(nèi)最多能出租一次,且每輛車的日租金x(元)是5的倍數(shù),發(fā)現(xiàn)每天的營運(yùn)規(guī)律如下:當(dāng)x不超過100元時(shí),觀光車能全部租出;當(dāng)x超過100元時(shí),每輛車的日租金每增加5元,租出去的觀光車就會減少1輛,已知所有觀光車每天的管理費(fèi)是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費(fèi))
(2)設(shè)每日凈收入為w元,請寫出w與x之間的函數(shù)關(guān)系式;
(3)若某日的凈收入為4420元,且使游客得到實(shí)惠,則當(dāng)天的觀光車的日租金是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為( )
A.2
B.8
C.2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣6,0),B(﹣1,1),C(﹣3,3),將△ABC繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)90°后得到△A1BC1 .
(1)畫出△A1BC1 , 寫出點(diǎn)A1、C1的坐標(biāo);
(2)計(jì)算線段BA掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(3)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).
時(shí)間x(天) | 1 | 30 | 60 | 90 |
每天銷售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的菱形ABCD的兩個(gè)頂點(diǎn)B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,則弧BC的長度等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com