【題目】如圖,、是的高,、垂足,在上截取,使,在的延長(zhǎng)線取一點(diǎn),使.試說(shuō)明:①;②.
【答案】①詳見(jiàn)解析;②詳見(jiàn)解析.
【解析】
①求出∠ACG=∠ABF,根據(jù)SAS推出△ABF≌△GCA即可.
②根據(jù)全等三角形性質(zhì)得出∠GAC=∠AFB,根據(jù)∠AFB=∠ADB+∠FAD,∠GAC=∠GAF+∠FAD推出∠GAF=∠ADF即可.
①∵BD、CE是△ABC的高,∴∠ADB=∠AEC=90°,
∴∠ABF+∠BAD=90°,∠GCA+∠BAD=90°,∴∠ABF=∠GCA,
在△ABF和△GCA中,∵,∴△ABF≌△GCA(SAS),∴AF=AG.
②∵△ABF≌△GCA,∴∠GAC=∠AFB.
∵∠AFB=∠ADB+∠FAD,∠GAC=∠GAF+∠FAD,∴∠GAF=∠ADF.
∵∠ADF=90°,∴∠GAF=90°,∴AG⊥AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了元,乙種商品共用了元.已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多元,且購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進(jìn)價(jià);
該商場(chǎng)將購(gòu)進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為元,乙種商品的銷售單價(jià)為元,銷售過(guò)程中發(fā)現(xiàn)甲種商品銷量不好,商場(chǎng)決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的九折銷售;乙種商品銷售單價(jià)保持不變.要使兩種商品全部售完后共獲利不少于元,問(wèn)甲種商品按原銷售單價(jià)至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為y=-x-1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過(guò)定點(diǎn)A(2,0),B(-1,3),直線l1與l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長(zhǎng)為4,面積為12,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F.若D為BC邊的中點(diǎn),M為線段EF上一個(gè)動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)P到原點(diǎn)O的距離為ρ,OP與x軸正方向的夾角為α,則用[ρ,α]表示點(diǎn)P的極坐標(biāo),例如:點(diǎn)P的坐標(biāo)為(1,1),則其極坐標(biāo)為[,45°].若點(diǎn)Q的極坐標(biāo)為[4,120°],則點(diǎn)Q的坐標(biāo)為( )
A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),AC,BC分別與⊙O相交于D.
(1)在圖中作出△ABC的邊AB上的高CH.(要求:①僅用無(wú)刻度真尺,且不能用直尺中的直角;②保留必要的作圖痕跡)
(2)連接DE,若,則∠C的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論:①b>0;②a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(1,1)、B(3,5),要在坐標(biāo)軸上找一點(diǎn),使得△PAB的周長(zhǎng)最小,則點(diǎn)的坐標(biāo)為( )
A.B.C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P,Q是直線y=﹣上的兩點(diǎn),P在Q的左側(cè),且滿足OP=OQ,OP⊥OQ,則點(diǎn)P的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com