如圖,拋物線1 :y=-x2平移得到拋物線,且經(jīng)過點(diǎn)O(0.0)和點(diǎn)A(4.0),的頂點(diǎn)為點(diǎn)B,它的對稱軸與相交于點(diǎn)C,設(shè)與BC圍成的陰影部分面積為S,解答下列問題:

(1)求表示的函數(shù)解析式及它的對稱軸,頂點(diǎn)的坐標(biāo)。

(2)求點(diǎn)C的坐標(biāo),并直接寫出S的值。

(3)在直線AC上是否存在點(diǎn)P,使得S△POAS?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由。

【參考公式:拋物線y=ax2+bx+c 的對稱軸是x=- ,

頂點(diǎn)坐標(biāo)是(-)】.

解:(1)設(shè)l2的函數(shù)解析式為y=x2bxc

把(4.0)代入函數(shù)解析式,得

      解得

∴y=x2+4x

∵y=x2+4xx-2)2+4

l2的對稱軸是直線x=2,頂點(diǎn)坐標(biāo)B(2,4)

(2)當(dāng)x=2時,y=x24

C點(diǎn)坐標(biāo)是(2,4)

S=8

(3)存在

設(shè)直線AC表示的函數(shù)解析式為ykxn

A(4,0),C(2,4)代入得

  解得

∴y=2x8

設(shè)△POA的高為h

SPOAOA·h=2h=4

設(shè)點(diǎn)P的坐標(biāo)為(m,2m-8).

∵SPOAS 且S=8

∴SPOA×8=4

當(dāng)點(diǎn)P軸上方時,得× 42m-8)=4,

解得m=5,

2m-8=2.

P的坐標(biāo)為(5.2.

當(dāng)點(diǎn)P軸下方時,得× 48-2m)=4.

解得m=3,

2m-8=-2

∴點(diǎn)P的坐標(biāo)為(3,-2.

綜上所述,點(diǎn)P的坐標(biāo)為(5-2)或(3,-2)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對稱;拋物線C1,C3關(guān)于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點(diǎn)中,四個點(diǎn)可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點(diǎn),過P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線x=1交x軸于點(diǎn)N.
(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)求經(jīng)過B、M兩點(diǎn)的直線的解析式,并求出此直線與x軸的交點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P在拋物線的對稱軸x=1上運(yùn)動,請你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過點(diǎn)A,并且與直線BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)精英家教網(wǎng).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過點(diǎn)F且與y軸平行.直線y=-x+m過點(diǎn)C,交y軸于D點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)K為線段AB上一動點(diǎn),過點(diǎn)K作x軸的垂線與直線CD交于點(diǎn)H,與拋物線交于點(diǎn)G,求線段HG長度的最大值;
(3)在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點(diǎn)是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊答案