【題目】如圖:△ABC的周長為30cm,把△ABC的邊AC對折,使頂點C和點A重合,折痕交BC邊于點D,交AC邊與點E,連接AD,若AE=4cm,則△ABD的周長是( )
A. 22cmB. 20cmC. 18cmD. 15cm
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△DAC、△EBC均是等邊三角形,點A、C、B在同一條直線上,且AE、BD分別與CD、CE交于點M、N.
求證:(1)AE=DB;
(2)△CMN為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,點E是BC的中點,連接AE并延長交DC的延長線于點F,連接BF.
(1)求證:△ABE≌△FCE;
(2)若AF=AD,求證:四邊形ABFC是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司研發(fā)1000件新產(chǎn)品,需要精加工后才能投放市場.現(xiàn)在甲、乙兩個工廠加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.25倍,公司需付甲工廠加工費用每天100元,乙工廠加工費用每天125元.
(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?
(2)兩個工廠同時合作完成這批產(chǎn)品,共付加工費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D為BC邊中點,P為AC邊中點,E為BC上一點且BE=CE,連接AE,取AE中點Q并連接QD,取QD中點G,延長PG與BC邊交于點H,若BC=6,則HE=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=3,若點M,N分別在OA,OB上,ΔPMN為等邊三角形,則滿足上述條件的△PMN有中( )
A. 1個B. 2個C. 3個D. 3個以上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C,D在線段AB上,△PCD是等邊三角形.
(1)當AC,CD,DB滿足怎樣的關(guān)系時,△ACP∽△PDB?
(2)當△ACP∽△PDB時,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】★若兩個扇形滿足弧長的比等于它們半徑的比,則稱這兩個扇形相似.如圖,如果扇形AOB與扇形A1O1B1是相似扇形,且半徑OA∶O1A1=k(k為不等于0的常數(shù)).那么下面四個結(jié)論:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③=k;④扇形AOB與扇形A1O1B1的面積之比為k2.成立的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學過的特殊四邊形中是勾股四邊形的一種圖形的名稱 ;
(2)如圖 1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你直接寫出所有以格點為頂點,OA、OB 為勾股邊且有對角線相等的勾股四邊形 OAMB 的頂點M 的坐標: ;
(3)如圖 2,將△ABC 繞頂點 B 按順時針方向旋轉(zhuǎn) 60°,得到△DBE,連接 AD、DC,∠DCB=30°.求證: DC2 BC2 AC2 ,即四邊形 ABCD 是勾股四邊形;
(4)若將圖 2 中△ABC 繞頂點 B 按順時針方向旋轉(zhuǎn) a 度(0°<a <90°),得到△DBE,連接 AD、DC,則當∠DCB= °時,四邊形BECD 是勾股四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com