如圖:△ABC中,AB=AC,∠A=40°,AB的垂直平分線DE分別交AC、AB于點D、E,則∠DBC的度數(shù)為( )

A.30°
B.40°
C.45°
D.70°
【答案】分析:已知∠A=40°,AB=AC可得∠ABC=∠ACB,再由線段垂直平分線的性質可求出∠ABC=∠A,易求∠DBC.
解答:解:∵∠A=40°,AB=AC,
∴∠ABC=∠ACB=70°,
又∵DE垂直平分AB,
∴DB=AD
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC-∠ABD=70°-40°=30°.
故選:A.
點評:此題主要考查了等腰三角形的性質以及線段垂直平分線的性質.主要了解線段垂直平分線的性質即可求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案