【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB'C'可以看作是由Rt△ABC繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)60°得到的,則線段B'C的長為______.
【答案】3
【解析】
作B′D⊥AC于D,構(gòu)造直角三角形,利用旋轉(zhuǎn)性質(zhì)得AB′=AB=6,∠B′AB=60°,
所以,∠DAB′=180°-60°-60°=60°,在Rt△DAB′中,AD=AB′=3,B′D=AD=3,可得CD=DA+AC=6,根據(jù)勾股定理得B′C== 3.
作B′D⊥AC于D,如圖,
∵∠ACB=90°,∠BAC=60°,AB=6,
∴AC=AB=3,
∵RtAB′C′可以看作是由Rt△ABC繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)60°得到的,
∴AB′=AB=6,∠B′AB=60°,
∴∠DAB′=180°-60°-60°=60°,
在Rt△DAB′中,∠DB′A=30°,AB′=6,
∴AD=AB′=3,B′D=AD=3,
∴CD=DA+AC=6,
在Rt△CDB′中,B′C== 3.
故答案為:3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,P為平面內(nèi)的一個(gè)動(dòng)點(diǎn),BP=BA,0<∠PBC<180 ,DB平分∠PBC,且DB=DA.
(1)當(dāng)BP與BA重合時(shí)(如圖1),求∠BPD的度數(shù);
(2)當(dāng)BP在∠ABC的內(nèi)部時(shí)(如圖2),求∠BPD的度數(shù);
(3)當(dāng)BP在∠ABC的外部時(shí),請(qǐng)你直接寫出∠BPD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交y軸于點(diǎn)A,交x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知C點(diǎn)坐標(biāo)為(6,0).
(1)求此拋物線的解析式;
(2)連結(jié)AB,過點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與拋物線的對(duì)稱軸l相切,先補(bǔ)全圖形,再判斷直線BD與⊙C的位置關(guān)系并加以證明;
(3)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),且位于A,C兩點(diǎn)之間.問:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積最大?求出△PAC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長為6cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是1cm/s,點(diǎn)Q運(yùn)動(dòng)的速度是2cm/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),解答下列問題:
(1)當(dāng)t=2時(shí),判斷△BPQ的形狀,并說明理由;
(2)設(shè)△BPQ的面積為S(cm2),求S與t的函數(shù)關(guān)系式;
(3)作QR//BA交AC于點(diǎn)R,連結(jié)PR,當(dāng)t為何值時(shí),△APR∽△PRQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點(diǎn)D為AB的中點(diǎn).
⑴如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請(qǐng)說明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為______cm/s時(shí),在某一時(shí)刻也能夠使△BPD與△CPQ全等.
⑵若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都按逆時(shí)針方向沿△ABC的三邊運(yùn)動(dòng).求經(jīng)過多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫出第一次相遇點(diǎn)在△ABC的哪條邊上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在口ABCD中,AB⊥AC,AB=1,BC=,對(duì)角線BD、AC交于點(diǎn)O.將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)分別交BC、AD于點(diǎn)E、F.
(1)試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;
(2)證明:當(dāng)旋轉(zhuǎn)角為90時(shí),四邊形ABEF是平行四邊形;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說明理由;如果能,求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足為E,若線段AE=3,則四邊形ABCD的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,C為的中點(diǎn),過點(diǎn)C作直線CD⊥AE于D,連接AC,BC.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若AD=2,AC=,求AB的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com