【題目】如圖,以矩形的頂點為坐標(biāo)原點,所在直線為軸,所在直線為軸,建立平面直角坐標(biāo)系.已知,,,點軸上一動點,以為一邊在右側(cè)作正方形.

1)若點與點重合,請直接寫出的坐標(biāo).

2)若點的延長線上,且,求點的坐標(biāo).

3)若,求點的坐標(biāo).

【答案】1;(2;(3,.

【解析】

1與點重合則點E為(6,3

2軸,證明:則點E為(8,3

3)分情況解答,在點右側(cè),過點軸,證明:在點左側(cè),點軸,證明:

解:(1 與點重合則點Ex軸的位置為2+4=6

.

2)過點軸,

∵∠BAD=EMD=BDE=90°,

∴∠BDA+ABD=BDA+MDE,

∴∠ABD=MDE,

BD=DE

,在線段的中垂線上,.

,.

.

3)①點在點右側(cè),如圖,

過點軸,同(2

設(shè),可得:,

求得:,(舍去)

②點在點左側(cè),如圖,

過點軸,同上得

設(shè),可得:

,

求得:,(舍去)

綜上所述:,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于點E,F(xiàn)AB的中點,聯(lián)結(jié)AE、EF,且AEBE.

求證:(1)四邊形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AB是⊙O的直徑,AC交⊙OG,EAG上一點,D為△BCE內(nèi)心,BEADF,且∠DBE=BAD.

(1)求證:BC是⊙O的切線;

(2)求證:DF=DG;

(3)若∠ADG=45°,DF=1,則有兩個結(jié)論:①ADBD的值不變;②ADBD的值不變,其中有且只有一個結(jié)論正確,請選擇正確的結(jié)論,證明并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地的一種綠色蔬菜,在市場上若直接銷售,每噸利潤為1000元,經(jīng)粗加工后銷售,每噸利潤4000元,經(jīng)精加工后銷售, 每噸利潤為7000元.當(dāng)?shù)匾患夜粳F(xiàn)有這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸, 如果對蔬菜進行精加工,每天可加工6噸,但每天兩種方式不能同時進行.受季節(jié)等條件的限制,必須用15天時間將這批蔬菜全部銷售或加工完畢.為此,公司研制了三種方案:

方案1:將蔬菜全部進行粗加工;

方案2:盡可能地對蔬菜進行精加工,沒來得及加工的蔬菜,在市場上直接出售;

方案3:將一部分蔬菜進行精加工, 其余蔬菜進行粗加工,并剛好15天完成.

如果你是公司經(jīng)理,你會選擇哪一種方案? 請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點是反比例函數(shù)的圖象上一點過點軸于點,連結(jié),的面積為.

1)求的值.

2)直線的延長線交于點,與反比例函數(shù)圖象交于點.

①若,求點坐標(biāo);②若點到直線的距離等于,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:

①若a+b+c=0,則b2﹣4ac>0;

②若方程兩根為﹣12,則2a+c=0;

③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;

④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=2x7平移后的圖象l經(jīng)過點(3,-2)

(1)l的函數(shù)解析式;并畫出該函數(shù)的圖象;

(2)lx軸交于點A,點Pl上一點,且SAOP=,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的一塊地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠BACBCD.若BC=16,CD=6,則AC=_____

查看答案和解析>>

同步練習(xí)冊答案