【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當∠BAC+∠DAE=180° 時,我們稱△ABC與△DAE互為“頂補等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點A叫做“旋補中心”.
(1)特例感知:在圖2,圖3中,△ABC與△DAE互為“頂補等腰三角形”,AM是“頂心距”。
①如圖2,當∠BAC=90°時,AM與DE之間的數(shù)量關系為AM= DE;
②如圖3,當∠BAC=120°,ED=6時,AM的長為 。
(2)猜想論證:
在圖1中,當∠BAC為任意角時,猜想AM與DE之間的數(shù)量關系,并給予證明。
(3)拓展應用
如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四邊ABCD的內(nèi)部找到點P,使得△PAD與△PBC互為“頂補等腰三角形”。并回答下列問題。
①請在圖中標出點P的位置,并描述出該點的位置為 ;
②直接寫出△PBC的“頂心距”的長為 。
【答案】(1)①;②3(2)AM=DE(3)
【解析】
(1)①根據(jù)全等三角形的判定與性質(zhì)推出△ABC與△DAE全等,再根據(jù)等腰直角三角形斜邊上的高等于斜邊的一半即可得出答案;②根據(jù)題意推出△ADE為等邊三角形,推出AB的長度為6,即可得出AM (2) 過點A作AN⊥ED于N,證出∠DAN=∠DAE,ND =DE和∠CAM=∠CAB,再證∠DAN+∠CAM=90°,∠DAN=∠C,推出
△AND≌△AMC,即可得出答案.
(1)①;②3
(2)猜想:結論AM=DE.
證明:過點A作AN⊥ED于N
∵AE=AD,AN⊥ED
∴∠DAN=∠DAE,ND =DE
同理可得:∠CAM=∠CAB,
∵∠DAE+∠CAB=180°,
∴∠DAN+∠CAM=90°,
∵∠CAM+∠C=90°
∴∠DAN=∠C,
∵AM⊥BC∴∠AMC=∠AND=90°
在△AND與△AMC中,
∴△AND≌△AMC,
∴ND=AM
∴AM=DE.
(3)①圖略;線段AC的中點或(線段AD的垂直平分線與線段AC的交點)或(線段BC的垂直平分線與線段AC的交點)等方法正確均可以給分;
②
PE為所求,由題意知,BC=,AB=,
所以PE=AB=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.
(1)求證:AC是⊙O的切線;
(2)若AB=OC=4,求圖中陰影部分的面積(結果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知線段a,P為線段a上任意一點,已知圖形M,Q為圖形M上任意一點,當P,Q兩點間的距離最小時,將此時PQ的長度稱為圖形M與線段a的近點距;當P,Q兩點間的距離最大時,將此時PQ的長度稱為圖形M與線段a的遠點距.
根據(jù)閱讀材料解決下列問題:
如圖1,在平面直角坐標系xOy中,點A的坐標為(﹣2,﹣2),正方形ABCD的對稱中心為原點O.
(1)線段AB與線段CD的近點距是 ,遠點距是 .
(2)如圖2,直線y=﹣x+6與x軸,y軸分別交于點E,F,則線段EF和正方形ABCD的近點距是 ,遠點距是 ;
(3)直線y=x+b(b≠0)與x軸,y軸分別交于點R,S,線段RS與正方形ABCD的近距點是,則b的值是 ;
(4)在平面直角坐標系xOy中,有一個矩形GHMN,若此矩形至少有一個頂點在以O為圓心1為半徑的圓上,其余各點可能在圓上或圓內(nèi),將正方形ABCD繞點O旋轉一周,在旋轉過程中,它與矩形GHMN的近點距的最小值是 ,遠點距的最大值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),已知△ABC為正三角形,點M是BC上一點,點N是AC上一點,AM、BN相交于點Q,BM=CN.求出∠BQM的度數(shù);
(2)將(1)中的“正△ABC”分別改為正方形ABCD、正五邊形ABCDE、…正n邊形ABCD…,“點N是AC上一點”改為點N是CD上一點,其余條件不變,分別推斷出∠BQM等于多少度,將結論填入下表:
正多邊形 | 正方形 | 正五邊形 | …… | 正n邊形 |
∠BQM的度數(shù) |
|
| …… |
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們不妨把橫坐標與縱坐標相等的點稱為夢之點,例如,點(1,1),(﹣ 2,﹣ 2),(,),…,都是夢之點,顯然夢之點有無數(shù)個.
(1)若點 P(2,b)是反比例函數(shù) (n 為常數(shù),n ≠ 0) 的圖象上的夢之點,求這個反比例函數(shù)解析式;
(2)⊙O 的半徑是 ,
①求出⊙O上的所有夢之點的坐標;
②已知點 M(m,3),點 Q 是(1)中反比例函數(shù) 圖象上異于點 P 的夢之點,過點Q 的直線 l 與 y 軸交于點 A,∠OAQ=45°.若在⊙ O 上存在一點 N,使得直線 MN ∥ l或 MN ⊥ l,求出 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,AB=10,點G為AC中點,連接BG,CE⊥BG于F,交AB于E,連接GE,點H為AB中點,連接FH,以下結論:①∠ACE=∠ABG;②CF=;③∠AGE=∠CGB;④FH平分∠BFE,其中正確的結論有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個圓柱形玻璃杯高,底面周長為,有一只螞蟻在一側距下底的外側點,與點正對的容器內(nèi)側距下底的點處有一飯粒,螞蟻想吃處的飯粒,要從杯子的外側爬到杯子的內(nèi)側,杯子的厚度忽略不計,則至少需要爬________________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5米.
(1)這個云梯的底端B離墻多遠?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長),那么梯子的底部在水平方向右滑動了多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com