【題目】某學(xué)校為了解學(xué)生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項選修活動的學(xué)生(每人必選且只能選修一項)進行抽樣調(diào)查.并根據(jù)收集的數(shù)據(jù)繪制了圖和圖兩幅不完整的統(tǒng)計圖.

根據(jù)圖中提供的信息,解答下列問題:

1)本次調(diào)查的學(xué)生共有  人;在扇形統(tǒng)計圖中,B所對應(yīng)的扇形的圓心角的度數(shù)是   ;

2)將條形統(tǒng)計圖補充完整;

3)在被調(diào)查選修古典舞的學(xué)生中有4名團員,其中有1名男生和3名女生,學(xué)校想從這4人中任選2人進行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是11女的概率.

【答案】1200、144;(2)補全圖形見解析;(3)被選中的2人恰好是11女的概率

【解析】

1)由A活動的人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以B活動人數(shù)所占比例即可得;
2)用總?cè)藬?shù)減去其它活動人數(shù)求出C的人數(shù),從而補全圖形;
3)列表得出所有等可能的情況數(shù),找出剛好抽到一男一女的情況數(shù),即可求出所求的概率.

1)本次調(diào)查的學(xué)生共有30÷15%200(人),

扇形統(tǒng)計圖中,B所對應(yīng)的扇形的圓心角的度數(shù)是360°×144°,

故答案為:200、144;

2C活動人數(shù)為200﹣(30+80+20)=70(人),

補全圖形如下:

3)畫樹狀圖為:

或列表如下:

1

2

3

﹣﹣﹣

(女,男)

(女,男)

(女,男)

1

(男,女)

﹣﹣﹣

(女,女)

(女,女)

2

(男,女)

(女,女)

﹣﹣﹣

(女,女)

3

(男,女)

(女,女)

(女,女)

﹣﹣﹣

∵共有12種等可能情況,11女有6種情況,

∴被選中的2人恰好是11女的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一塊直角三角板ABC中,C=90°,A=30°,BC=1,將另一個含30°角的EDF30°角的頂點D放在AB邊上,E、F分別在AC、BC上,當(dāng)點DAB邊上移動時,DE始終與AB垂直,若CEFDEF相似,則AD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,

1)如圖,上的點,過點作直線截,使截得的三角形與相似.例如:過點,則截得的相似.請你在圖中畫出所有滿足條件的直線.

2)如圖上異于點,的動點,過點作直線截,使截得的三角形與相似,直接寫出滿足條件的直線的條數(shù).(不要求畫出具體的直線)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+圖象與x軸,y軸分別相交于A、B兩點,與反比例函數(shù)y=(k≠0)的圖象相交于點E、F,過F作y軸的垂線,垂足為點C,已知點A(﹣3,0),點F(3,t).

(1)求一次函數(shù)和反比例函數(shù)的表達式;

(2)求點E的坐標(biāo)并求△EOF的面積;

(3)結(jié)合該圖象寫出滿足不等式﹣ax≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對函數(shù)的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.

1)自變量的取值范圍是全體實數(shù),的幾組對應(yīng)值列表:

其中,________

2)根據(jù)表格數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該圖象的另一部分.

3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì):

________

________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠ACB90°,D是射線CB上一點(點D不與點B重合),以AD為斜邊作等腰直角三角形ADE(點E和點CAB的同側(cè)),連接CE

1)如圖,當(dāng)點D與點C重合時,直接寫出CEAB的位置關(guān)系;

2)如圖,當(dāng)點D與點C不重合時,(1)的結(jié)論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由;

3)當(dāng)∠EAC15°時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D在⊙O的直徑AB的延長線上,CD切⊙O于點C,AECD于點E

(1)求證:AC平分∠DAE;

(2)若AB=6,BD=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)yax2+bx3A10)、B3,0)、C三點.

1)求拋物線解析式;

2)如圖1,點PBC上方拋物線上一點,作PQy軸交BCQ點.請問是否存在點P使得△BPQ為等腰三角形?若存在,請直接寫出P點坐標(biāo);若不存在,請說明理由;

3)如圖2,連接AC,點D是線段AB上一點,作DEBCACE點,連接BE.若△BDE∽△CEB,求D點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=-x2x+4.

(1)確定拋物線的開口方向、頂點坐標(biāo)和對稱軸;

(2)當(dāng)x取何值時,yx的增大而增大?當(dāng)x取何值時,yx的增大而減?

查看答案和解析>>

同步練習(xí)冊答案