【題目】如圖,數(shù)軸上點(diǎn)A、B表示的點(diǎn)分別為-6和3
(1)若數(shù)軸上有一點(diǎn)P,它到A和點(diǎn)B的距離相等,則點(diǎn)P對應(yīng)的數(shù)字是________(直接寫出答案)
(2)在上問的情況下,動點(diǎn)Q從點(diǎn)P出發(fā),以3個單位長度/秒的速度在數(shù)軸上向左移動,是否存在某一個時刻,Q點(diǎn)與B點(diǎn)的距離等于 Q點(diǎn)與A點(diǎn)的距離的2倍?若存在,求出點(diǎn)Q運(yùn)動的時間,若不存在,說明理由.
【答案】(1)-1.5;(2)存在這樣的時刻,點(diǎn)Q運(yùn)動的時間為0.5秒或4.5秒.
【解析】
(1)根據(jù)同一數(shù)軸上兩點(diǎn)的距離公式可得結(jié)論;
(2)分兩種情況:當(dāng)點(diǎn)Q在A的左側(cè)或在A的右側(cè)時,根據(jù)Q點(diǎn)與B點(diǎn)的距離等于Q點(diǎn)與A點(diǎn)的距離的2倍可得結(jié)論;
解:(1)數(shù)軸上點(diǎn)A表示的數(shù)為-6;點(diǎn)B表示的數(shù)為3;
∴AB=9;
∵P到A和點(diǎn)B的距離相等,
∴點(diǎn)P對應(yīng)的數(shù)字為-1.5.
(2)由題意得:設(shè)Q點(diǎn)運(yùn)動得時間為t,則QB=4.5+3t,QA=
分兩種情況:
①點(diǎn)Q在A的左邊時,4.5+3t=2,
t=0.5,
②點(diǎn)Q在A的右邊時,4.5+3t=2,
t=4.5,
綜上,存在這樣的時刻,點(diǎn)Q運(yùn)動的時間為0.5秒或4.5秒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 請將下列證明過程補(bǔ)充完整:
已知:∠1=∠E,∠B=∠D.求證:AB∥CD
證明:∵ ∠1=∠E( 已知 )
∴ ∥ ( )
∴ ∠D+∠2=180° ( )
∵ ∠B=∠D( 已知 )
∴ ∠B+ ∠2= 180° ( )
∴ AB∥CD ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,∠BAO=30°,以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點(diǎn)D.
(1)連接BD,OE.求證:BD=OE;
(2)連接DE交AB于F.求證:F為DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家需要用鋼管做防盜窗,按設(shè)計(jì)要求,其中需要長為0.8米的鋼管100根,還需要長為2.5米的鋼管32根,兩種長度的鋼管粗細(xì)必須相同;并要求這些用料不能是焊接而成的.經(jīng)市場調(diào)查,鋼材市場中符合這種規(guī)格的鋼管每根長均為6米.
(1)試問:把一根長為6米的鋼管進(jìn)行裁剪,有下面幾種方法,
請完成填空(余料作廢).
方法①:只裁成為0.8米的用料時,最多可裁7根;
方法②:先裁下1根2.5米長的用料,余下部分最多能裁成為0.8米長的用料 根;
方法③:先裁下2根2.5米長的用料,余下部分最多能裁成為0.8米長的用料1 根.
(2)分別用(1)中的方法②和方法③各裁剪多少根6米長的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料;
(3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要6米長的鋼管與(2)中根數(shù)相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個形如六邊形的點(diǎn)陣,它的中心是一個點(diǎn),作為第一層,第二層每邊有兩個點(diǎn),第三層每邊有三個點(diǎn),依此類推.
(1)填寫下表:
層 數(shù) | 1 | 2 | 3 | 4 | 5 | … |
該層對應(yīng)的點(diǎn)數(shù) | 1 | 6 | … |
(2)寫出第n層所對應(yīng)的點(diǎn)數(shù)(n≥2).
(3)如果某一層共96個點(diǎn),你知道它是第幾層嗎?
(4)有沒有一層,它的點(diǎn)數(shù)為100個?
(5)寫出n層的六邊形點(diǎn)陣的總點(diǎn)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形ABC的直角邊AB=6,BC=8,將直角三角形ABC沿邊BC的方向平移到三角形DEF的位置,DE交AC于點(diǎn)G,BE=2,三角形CEG的面積為13.5,下列結(jié)論:
①三角形ABC平移的距離是4; ②EG=4.5;
③AD∥CF; ④四邊形ADFC的面積為6.
其中正確的結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】認(rèn)真閱讀并填空:
已知:如圖,∠1=∠2,∠C=∠D,試說明:∠A=∠F.
解:∵∠1=∠2(已知),∠2=∠3( )
∴∠1=∠3(等量代換)
∴BD∥EC( )
∴∠4=∠C(兩直線平行,同位角相等)
又∠C=∠D(已知)
∴∠4=∠D( )
∴ ∥ (內(nèi)錯角相等,兩直線平行)
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,如果△ABC與△DEF都是正方形網(wǎng)格中的格點(diǎn)三角形(頂點(diǎn)在格點(diǎn)上),那么S△DEF:S△ABC的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com