我們知道:12<21,23<32

(1)請你用不等號填空:

34________43,45________54,56________65,67________76,…;

(2)猜想:當(dāng)n>2時,nn+1________(n+1)n;

(3)運用上述猜想填空:20092010________20102009.(本題可以利用計算器計算)

答案:(1)>,>,>,>;(2)>;(3)>
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、從“特殊到一般”是數(shù)學(xué)上常用的一種思維方法.例如,“你會比較20112012與20122011的大小嗎?”我們可以采用如下的方法:
(1)通過計算比較下列各式中兩數(shù)的大。海ㄌ睢埃尽、“<”或“=”)
①12
21,②23
32,③34
43,④45
54,⑤56
65,…
(2)由(1)可以猜測nn+1與(n+1) n (n為正整數(shù))的大小關(guān)系:
當(dāng)n
≤2
時,nn+1<(n+1)n;當(dāng)n
>2
時,nn+1>(n+1)n;
(3)根據(jù)上面的猜想,可以知道:20112012
20122011(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
1
2
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

從“特殊到一般”是數(shù)學(xué)上常用的一種思維方法.例如,“你會比較20112012與20122011的大小嗎?”我們可以采用如下的方法:
(1)通過計算比較下列各式中兩數(shù)的大。海ㄌ睢埃尽、“<”或“=”)
①12______21,②23______32,③34______43,④45______54,⑤56______65,…
(2)由(1)可以猜測nn+1與(n+1) n (n為正整數(shù))的大小關(guān)系:
當(dāng)n______時,nn+1<(n+1)n;當(dāng)n______時,nn+1>(n+1)n;
(3)根據(jù)上面的猜想,可以知道:20112012______20122011(填“>”、“<”或“=”).

查看答案和解析>>

同步練習(xí)冊答案