【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1 , 連接AD1、BC1 . 若∠ACB=30°,AB=1,CC1=x,△ACD與△A1C1D1重疊部分面積為S,則下列結(jié)論:
①△A1AD1≌△CC1B;
②當x=1時,四邊形ABC1D1是菱形;
③當x=2時,△BDD1為等邊三角形;
④S= (x﹣2)2(0≤x≤2).
其中正確的是(將所有正確答案的序號都填寫在橫線上)
【答案】①②③
【解析】解:①∵四邊形ABCD為矩形,
∴BC=AD,BC∥AD
∴∠DAC=∠ACB
∵把△ACD沿CA方向平移得到△A1C1D1 ,
∴∠A1=∠DAC,A1D1=AD,AA1=CC1 ,
在△A1AD1與△CC1B中,
故①正確;
②∵∠ACB=30°,
∴∠CAB=60°,
∵AB=1,
∴AC=2,
∵x=1,
∴AC1=1,
∴△AC1B是等邊三角形,
∴AB=D1C1 ,
又AB∥D1C1 ,
∴四邊形ABC1D1是菱形,
故②正確;
③如圖所示:
則可得BD=DD1=BD1=2,
∴△BDD1為等邊三角形,故③正確.
④易得△AC1F∽△ACD,
∴ ,
解得: = (0<x<2);故④錯誤;
綜上可得正確的是①②③.
所以答案是:①②③.
【考點精析】認真審題,首先需要了解矩形的性質(zhì)(矩形的四個角都是直角,矩形的對角線相等),還要掌握平移的性質(zhì)(①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點所連的線段平行(或在同一直線上)且相等)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長線于點F,若∠F=30°,DE=1,試求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點P、Q分別為BC、CD邊上一點,且BP=CQ=BC,連接AP、BQ交于點G,在AP的延長線上取一點E,使GE=AG,連接BE、CE.∠CBE的平分線BN交AE于點N,連接DN,若DN=,則CE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有點a,b,c三點
(1)用“<”將a,b,c連接起來.
(2)b﹣a 1(填“<”“>”,“=”)
(3)化簡|c﹣b|﹣|c﹣a+1|+|a﹣1|
(4)用含a,b的式子表示下列的最小值:
①|(zhì)x﹣a|+|x﹣b|的最小值為 ;
②|x﹣a|+|x﹣b|+|x+1|的最小值為 ;
③|x﹣a|+|x﹣b|+|x﹣c|的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知數(shù)軸上有三點A、B、C,AB=60,點A對應(yīng)的數(shù)是40.
(1)若,求點C到原點的距離;
(2)如圖2,在(1)的條件下,動點P、Q兩點同時從C、A出發(fā)向右運動,同時動點R從點A向左運動,已知點P的速度是點R的速度的3倍,點Q的速度是點R的速度2倍少5個單位長度/秒.經(jīng)過5秒,點P、Q之間的距離與點Q、R之間的距離相等,求動點Q的速度;
(3)如圖3,在(1)的條件下,O表示原點,動點P、T分別從C、O兩點同時出發(fā)向左運動,同時動點R從點A出發(fā)向右運動,點P、T、R的速度分別為5個單位長度/秒、1個單位長度/秒、2個單位長度/秒,在運動過程中,如果點M為線段PT的中點,點N為線段OR的中點.請問的值是否會發(fā)生變化?若不變,請求出相應(yīng)的數(shù)值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列結(jié)論:①AC﹣BE=AE;②點E在線段BC的垂直平分線上;③∠DAE=∠C;④BC=4AD,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計劃從某苗木基地購進A、B兩咱樹苗共200棵綠化校園。已知購買了3棵A種樹苗和5棵B種樹苗共需700元;購買2棵A種樹苗和1棵B種樹苗共需280元.
(1)每棵A種樹苗、B種樹苗各需多少元?
(2)學(xué)校除支付購買樹苗的費用外,平均每棵樹苗還需支付運輸及種植費用20元。設(shè)學(xué)校購買B種樹苗x棵,購買兩種樹苗及運輸、種植所需的總費用為y元,求y與x的函數(shù)關(guān)系;
(3)在(2)的條件下,若學(xué)校用于綠化的總費用在22400元限額內(nèi),且購買A種樹苗的數(shù)量不少于B種樹苗的數(shù)量,請給出一種費用最省的方案,并求出該方案所需的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對稱的.
(2)寫出點的坐標(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com