【題目】已知關于x的一元二次方程x2﹣2 x+m=0有兩個不相等的實數(shù)根.
(1)求實數(shù)m的取值范圍;
(2)在(1)的條件下,化簡:

【答案】
(1)解:根據(jù)題意得△=(﹣2 2﹣4m>0,

解得m<3


(2)解:原式=|m﹣3|+|4﹣m|

=﹣(m﹣3)+4﹣m

=7﹣2m


【解析】(1)根據(jù)判別式的意義得到△=(﹣2 2﹣4m>0,然后解不等式即可得到m的取值范圍;(2)根據(jù)二次根式的性質得到原式=|m﹣3|+|4﹣m|,再根據(jù)(1)中m的范圍去絕對值,然后合并同類項即可.
【考點精析】通過靈活運用二次根式的性質與化簡和求根公式,掌握1、如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來;根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD中,AB=1,在BC上取一點E , 沿AE將△ABE向上折疊,使B點落在AD上的F點,若四邊形EFDC與矩形ABCD相似,則AD=(  ).

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點A逆時針旋轉一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為(
A.60°
B.75°
C.85°
D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點C順時針旋轉至△A′B′C,使點A′恰好落在AB上,則旋轉角度為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點A、B,AB=2,與y軸交于點C,對稱軸為直線x=2,對稱軸交x軸于點M.

(1)求拋物線的函數(shù)解析式;
(2)設P為對稱軸上一動點,求△APC周長的最小值;
(3)設D為拋物線上一點,E為對稱軸上一點,若以點A、B、D、E為頂點的四邊形是菱形,則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y= x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點坐標是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點坐標及D點的坐標;
(3)二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最。咳鬋點存在,求出C點的坐標;若C點不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:
(1)x2+2x﹣2=0
(2)3x2+4x﹣7=0
(3)(x+3)(x﹣1)=5
(4)(3﹣x)2+x2=9.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

(1)把△ABC向上平移5個單位后得到對應的△A1B1C1 , 畫出△A1B1C1 , 并寫出C1的坐標.
(2)以點B為位似中心在格紙內畫出△A2BC2 , 且與△ABC的位似比為2:1,并寫出C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果函數(shù)y=2x2﹣3ax+1,在自變量x的值滿足1≤x≤3的情況下,與其對應的函數(shù)值y的最小值為﹣23,則a的值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案