【題目】已知:BD的直徑,O為圓心,點(diǎn)A為圓上一點(diǎn),過(guò)點(diǎn)B的切線(xiàn)交DA的延長(zhǎng)線(xiàn)于點(diǎn)F,點(diǎn)C上一點(diǎn),且,連接BCAD于點(diǎn)E,連接AC

如圖1,求證:

如圖2,點(diǎn)H內(nèi)部一點(diǎn),連接OH,CH時(shí),求證:;

的條件下,若,的半徑為10,求CE的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).

【解析】

由BD為的直徑,得到,根據(jù)切線(xiàn)的性質(zhì)得到,根據(jù)等腰三角形的性質(zhì)得到,等量代換即可得到結(jié)論;

如圖2,連接OC,根據(jù)平行線(xiàn)的判定和性質(zhì)得到,根據(jù)等腰三角形的性質(zhì)得到,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

根據(jù)相似三角形的性質(zhì)得到,根據(jù)勾股定理得到,根據(jù)全等三角形的性質(zhì)得到,,根據(jù)射影定理得到,根據(jù)相交弦定理即可得到結(jié)論.

的直徑,

,

的切線(xiàn),

,

,

,

,

,

,

如圖2,連接OC

,

,

,

,

,

,

,

,

;

知,,

,的半徑為10,

,

中,

,

,

,,

,

,

,

,

BC交于E,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB30,∠AOB內(nèi)有一定點(diǎn)P,且OP10.在OA上有一動(dòng)點(diǎn)Q,OB上有一動(dòng)點(diǎn)R.若ΔPQR周長(zhǎng)最小,則最小周長(zhǎng)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小燁在探究數(shù)軸上兩點(diǎn)間距離時(shí)發(fā)現(xiàn):若兩點(diǎn)在軸上或與軸平行,兩點(diǎn)的橫坐標(biāo)分別為,則兩點(diǎn)間距離為;兩點(diǎn)在軸上或與軸平行,兩點(diǎn)的縱坐標(biāo)分別為,則兩點(diǎn)間距離為.據(jù)此,小燁猜想:對(duì)于平面內(nèi)任意兩點(diǎn),兩點(diǎn)間的距離為.

(1)請(qǐng)你利用下圖,試證明:;

(2)若,試在軸上求一點(diǎn),使的距離最短,并求出的最小值和點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工程隊(duì)用甲、乙兩臺(tái)隧道挖掘機(jī)從兩個(gè)方向挖掘同一條隧道,因?yàn)榈刭|(zhì)條件不同,甲、乙的挖掘速度不同,已知甲、乙同時(shí)挖掘天,可以挖米,若甲挖天,乙挖天可以挖掘米.

1)請(qǐng)問(wèn)甲、乙挖掘機(jī)每天可以挖掘多少米?

2)若乙挖掘機(jī)比甲挖掘每小時(shí)多挖掘米,甲、乙每天挖掘的時(shí)間相同,求甲每小時(shí)挖掘多少米?

3)若隧道的總長(zhǎng)為米,甲、乙挖掘機(jī)工作天后,因?yàn)榧淄诰驒C(jī)進(jìn)行設(shè)備更新,乙挖掘機(jī)設(shè)備老化,甲比原來(lái)每天多挖米,同時(shí)乙比原來(lái)少挖.最終,甲、乙兩臺(tái)挖掘機(jī)在相同時(shí)間里各完成隧道總長(zhǎng)的一半,請(qǐng)用含的代數(shù)式表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

1)在圖中作出△ABC關(guān)于直線(xiàn)l對(duì)稱(chēng)的△A1B1C1;(要求:AA1,BB1,CC1相對(duì)應(yīng))

2 三角形;

3)若有一格點(diǎn)P到點(diǎn)A、B的距離相等(PA=PB),則網(wǎng)格中滿(mǎn)足條件的點(diǎn)P共有 個(gè);

(4)在直線(xiàn)上找一點(diǎn)Q,使QB+QC的值最小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)DAC延長(zhǎng)線(xiàn)上一點(diǎn),連接BD,過(guò)A,垂足為M,交BC于點(diǎn)N

如圖1,若,,求AM的長(zhǎng);

如圖2,點(diǎn)ECA的延長(zhǎng)線(xiàn)上,且,連接EN并延長(zhǎng)交BD于點(diǎn)F,求證:

的條件下,當(dāng)時(shí),請(qǐng)求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)m,CE⊥直線(xiàn)m,垂足分別為點(diǎn)DE.猜測(cè)DE、BD、CE三條線(xiàn)段之間的數(shù)量關(guān)系(直接寫(xiě)出結(jié)果即可)

(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、AE三點(diǎn)都在直線(xiàn)m上,并且有∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)第(1)題中DE、BD、CE之間的關(guān)系是否仍然成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

(3)拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線(xiàn)m上的兩動(dòng)點(diǎn)(D、AE三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線(xiàn)上的一點(diǎn),且△ABF△ACF均為等邊三角形,連接BD、CE,若∠BDA=AEC=BAC,試判斷線(xiàn)段DF、EF的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在圖一中,將等邊BC邊中點(diǎn)D順時(shí)針旋轉(zhuǎn),直線(xiàn)AG與直線(xiàn)CF交于點(diǎn)求證.小明同學(xué)的思路是這樣的:通過(guò)證明得到,從而得到,繼續(xù)推理就可以使問(wèn)題得到解決.

請(qǐng)根據(jù)小明的思路,求證:;

愛(ài)動(dòng)腦筋的小明把問(wèn)題做了進(jìn)一步思考,他想:如果把題目的“等邊”改成“等腰直角,其中,”,如圖二,中的結(jié)論還成立嗎?如果成立,求此時(shí)線(xiàn)段BM的最大值.

小明繼續(xù)大膽設(shè)問(wèn):如圖三,在中,,,將這樣的按照題目中的方式旋轉(zhuǎn),請(qǐng)直接寫(xiě)出AGCF的位置關(guān)系以及線(xiàn)段BM的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在課外活動(dòng)時(shí)間,甲、乙、丙做“互相踢毽子”游戲,毽子從一人傳給另一人就記為一次踢毽.

若從甲開(kāi)始,經(jīng)過(guò)三次踢毽后,毽子踢到乙處的概率是多少?請(qǐng)說(shuō)明理由;

若經(jīng)過(guò)三次踢毽后,毽子踢到乙處的可能性最小,則應(yīng)從______開(kāi)始踢.

查看答案和解析>>

同步練習(xí)冊(cè)答案