【題目】如圖,正方形中,,點在邊上,且,將沿對折至,延長交邊于點,連接,,則下列結(jié)論:①≌;②;③;④,其中正確的個數(shù)是( )個
A.1B.2C.3D.4
【答案】C
【解析】
根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;求得∠GAF=45°,即可得到∠AGB+∠AED=180°-∠GAF=135°.
∵△AFE是由△ADE折疊得到,
∴AF=AD,∠AFE=∠AFG=∠D=90°,
又∵四邊形ABCD是正方形,
∴AB=AD,∠B=∠D,
∴AB=AF,∠B=∠AFG=90°,
在Rt△ABG和Rt△AFG中,
∵ ,
∴Rt△ABG≌Rt△AFG(HL),
故①正確;
∵正方形ABCD中,AB=6,CD=3DE,
∵EF=DE=CD=2,
設(shè)BG=FG=x,則CG=6-x.
在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,
解得x=3.
∴BG=3,CG=6-3=3;
∴BG=CG;
∴②正確.
∵CG=BG,BG=GF,
∴CG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG;
∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
∴③正確
∵∠BAG=∠FAG,∠DAE=∠FAE,
又∵∠BAD=90°,
∴∠GAE=45°,
∴∠AGB+∠AED=180°-∠GAE=135°.
∴④錯誤.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O(shè)為圓心,OC為半徑作⊙O.AO交⊙O于點E,延長AO交⊙O于點D,tanD= ,
(1)求 的值.
(2)設(shè)⊙O的半徑為3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為 ,點A,B,E在x軸上,若正方形BEFG的邊長為6,則點C的坐標為( )
A.(2,2)
B.(3,1)
C.(3,2)
D.(4,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,O是BC邊的中點,點E是正方形內(nèi)一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉(zhuǎn)90°得DF,連接AE,CF
(1)如圖1,求證:AE=CF;
(2)如圖2,若A,E,O三點共線,求點F到直線BC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生的愛國意識,某中學舉辦“愛我中華”朗誦比賽,全校學生都參加,并對表現(xiàn)優(yōu)異的學生進行表彰,設(shè)置一、二、三等獎和進步獎共四個獎項,賽后,校統(tǒng)計小組隨機抽取了九年級兩個班級,并將這兩個班的獲獎情況繪制成以下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中的信息,解答下列問題:
(1)求本次調(diào)查抽取的學生人數(shù),并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,表示“三等獎”的扇形所對應的圓心角度數(shù)是 72 °.
(3)若該校共有2600名學生,試估計得獎的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一枚質(zhì)地均勻的正四面體骰子,它的四個面上分別標有數(shù)字0,1,2,3,如圖2,正方形ABCD的四個頂點處均有一個圈.課間,李麗和王萍利用它們玩跳圈游戲,玩法如下:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形ABCD的邊順時針分鐘連續(xù)跳幾個邊長.
例如:若從圈A起跳,第一擲得的數(shù)字為2,便沿正方形的邊順時針連續(xù)跳2個邊長,落到圈C,第二次擲得的數(shù)字為3,便從圈C開始,沿正方形的邊順時針連續(xù)跳3個邊長,落到圈B,….
設(shè)她們從圈A起跳.
(1)若李麗隨機擲這枚骰子一次,求她跳回圈A的概率;
(2)若王萍隨機擲這枚骰子兩次,請用列表法或畫樹狀圖求她最后跳回圈A的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某造紙企業(yè)為了更好地處理污水問題,決定購買10臺新型污水處理設(shè)備.甲、乙兩種型號的設(shè)備可選,其中每臺的價格,月處理污水量如表:
A型 | B型 | |
價格(萬元/) | 10 | 8 |
處理污水量(噸/月) | 180 | 150 |
(1)經(jīng)預算:該企業(yè)購買污水處理設(shè)備的資金不超過85萬元,你認為該企業(yè)有哪幾種購買方案.
(2)在(1)的條件下,若每月需要處理的污水不低于1530噸,為了節(jié)約資金,請你為該企業(yè)設(shè)計一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com