分析 (1)根據(jù)已知等邊三角形的性質(zhì)可推出△ADG是等邊三角形,從而再利用SAS判定△AGE≌△DAC;
(2)連接AF,由已知可得四邊形EFCD是平行四邊形,從而得到EF=CD,∠DEF=∠DCF,由(1)知△AGE≌△DAC得到AE=CD,∠AED=∠ACD,從而可得到EF=AE,∠AEF=60°,所以△AEF為等邊三角形.
解答 (1)證明:∵△ABC是等邊三角形,
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°.
∵EG∥BC,
∴∠ADG=∠ABC=60°∠AGD=∠ACB=60°.
∴△ADG是等邊三角形.
∴AD=DG=AG.
∵DE=DB,
∴EG=AB.
∴GE=AC.
∵EG=AB=CA,
∴∠AGE=∠DAC=60°,
在△AGE和△DAC中,
$\left\{\begin{array}{l}{AG=AD}\\{∠AGE=∠DAC}\\{GE=AC}\end{array}\right.$,
∴△AGE≌△DAC(SAS).
(2)解:△AEF為等邊三角形.
證明:如圖,連接AF,
∵DG∥BC,EF∥DC,
∴四邊形EFCD是平行四邊形,
∴EF=CD,∠DEF=∠DCF,
由(1)知△AGE≌△DAC,
∴AE=CD,∠AED=∠ACD.
∵EF=CD=AE,∠AED+∠DEF=∠ACD+∠DCB=60°,
∴△AEF為等邊三角形.
點(diǎn)評(píng) 此題主要考查學(xué)生對(duì)全等三角形的判定,等邊三角形的性質(zhì)及判定的理解及運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個(gè)數(shù) | 4 | 6 | 8 | 10 | … | 2(n+1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com