【題目】如圖,某輪船上午8時在A處,測得燈塔S在北偏東60°的方向上,向東行駛至中午11時,該輪船在B處,測得燈塔S在北偏西30°的方向上(自己完成圖形),已知輪船行駛速度為每小時60千米,求∠ASB的度數(shù)及AB的長.

【答案】ASB=90°,AB=180千米.

【解析】

根據(jù)方位角的概念,畫圖正確表示出方位角,即可求解.

解:如圖:

由圖可知∠SAB90°﹣∠DAS90°﹣60°=30°,∠ABS90°﹣∠SBC90°﹣30°=60°,

在△ABS中,∠SAB30°,∠ABS60°,

∴∠ASB180°﹣∠ABS﹣∠SAB180°﹣60°﹣30°=90°.

60×(118)=180(千米).

AB長為180千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進(jìn)A,B兩種型號的手機(jī),已知每部A型號手機(jī)的進(jìn)價比每部B型號手機(jī)進(jìn)價多500元,每部A型號手機(jī)的售價是2500元,每部B型號手機(jī)的售價是2100元.

(1)若商場用50000元共購進(jìn)A型號手機(jī)10部,B型號手機(jī)20部,求A、B兩種型號的手機(jī)每部進(jìn)價各是多少元?

(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機(jī)共40部,且A型號手機(jī)的數(shù)量不少于B型號手機(jī)數(shù)量的2倍.

①該商場有哪幾種進(jìn)貨方式?

②該商場選擇哪種進(jìn)貨方式,獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完善下列解題步輩.井說明解題依據(jù).

如圖,已知∠1=∠2,∠B=∠C,求證:AB∥CD.

證明:∵∠1=∠2(已知)

∠1=∠CGD______

∴∠2=∠CGD______

∴______∥____________),

∴∠C=____________

∵∠B=∠C(已知)

∴______=∠B

AB∥CD______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小柔要榨果汁,她有蘋果、芭樂、柳丁三種水果,且其顆數(shù)比為9:7:6,小柔榨完果汁后,蘋果、芭樂、柳丁的顆數(shù)比變?yōu)?/span>6:3:4,已知小柔榨果汁時沒有使用柳丁,關(guān)于她榨果汁時另外兩種水果的使用情形,下列敘述何者正確?(  )

A. 只使用蘋果

B. 只使用芭樂

C. 使用蘋果及芭樂,且使用的蘋果顆數(shù)比使用的芭樂顆數(shù)多

D. 使用蘋果及芭樂,且使用的芭樂顆數(shù)比使用的蘋果顆數(shù)多

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個箱子內(nèi)有4顆相同的球,將4顆球分別標(biāo)示號碼1、2、3、4,今翔翔以每次從箱子內(nèi)取一顆球且取后放回的方式抽取,并預(yù)計取球10次,現(xiàn)已取了8次,取出的結(jié)果如表所列:

次數(shù)

1

2

3

4

5

6

7

8

9

10

號碼

1

3

4

4

2

1

4

1

若每次取球時,任一顆球被取到的機(jī)會皆相等,且取出的號碼即為得分,請回答下列問題:

(1)請求出第1次至第8次得分的平均數(shù).

(2)承(1),翔翔打算依計劃繼續(xù)從箱子取球2次,請判斷是否可能發(fā)生「這10次得分的平均數(shù)不小于2.2,且不大于2.4」的情形?若有可能,請計算出發(fā)生此情形的機(jī)率,并完整寫出你的解題過程;若不可能,請完整說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)PQ分別是邊長為4cm的等邊的邊AB、BC上的動點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時出發(fā),且它們的速度都是,設(shè)運(yùn)動時間為t秒.

連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動的過程中,變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);

連接PQ,

當(dāng)秒時,判斷的形狀,并說明理由;

當(dāng)時,則______直接寫出結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)EBC上,EF⊥AB,垂足為F.

1CDEF平行嗎?為什么?

2)如果∠1=∠2,CD平分∠ACB,且∠3=120°,求∠ACB∠1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________

查看答案和解析>>

同步練習(xí)冊答案