【題目】如圖,在各個手指間標(biāo)記字母AB,C,D.請你按圖中箭頭所指方向(即ABCDCBABC的方式)從A開始數(shù)連續(xù)的正整數(shù)12,3,4…當(dāng)數(shù)到11時,對應(yīng)的字母是__.當(dāng)字母C2n1次出現(xiàn)時(n為正整數(shù)),恰好數(shù)到的數(shù)是__(用含n的代數(shù)式表示).

【答案】C 32n1).

【解析】

根據(jù)數(shù)字的變化發(fā)現(xiàn)規(guī)律字母C1次出現(xiàn)時,恰好數(shù)到的數(shù)是3=1×3,字母C3次出現(xiàn)時,恰好數(shù)到的數(shù)是9=3×3,…,字母C2n-1次出現(xiàn)時(n為正整數(shù)),恰好數(shù)到的數(shù)是32n-1).即可得結(jié)論.

解:根據(jù)題意,得

A開始數(shù)連續(xù)的正整數(shù)1,23,4…當(dāng)數(shù)到11時,對應(yīng)的字母是C

當(dāng)ABCDCBABC

字母C1次出現(xiàn)時,恰好數(shù)到的數(shù)是31×3,

字母C2次出現(xiàn)時,恰好數(shù)到的數(shù)是52×31,

字母C3次出現(xiàn)時,恰好數(shù)到的數(shù)是,93×3,

字母C4次出現(xiàn)時,恰好數(shù)到的數(shù)是114×31,

發(fā)現(xiàn)規(guī)律

字母C2n1次出現(xiàn)時(n為正整數(shù)),恰好數(shù)到的數(shù)是32n1).

故答案為:C32n1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,的平分線交于邊上一點,且,,則的長是(

A.3B.4C.5D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運動,我市城區(qū)四校決定聯(lián)合購買一批足球運動裝備.市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打七折.

1)求每套隊服和每個足球的價格分別是多少元?

2)若城區(qū)四校聯(lián)合購買100套隊服和aa10)個足球,請用含a的代數(shù)式分別表示出到甲商場和乙商場購買裝備所花費用;

3)在(2)的條件下,當(dāng)a65時,你認為到甲、乙哪家商場購買比較合算?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請仔細閱讀下面兩則材料,然后解決問題:

材料1:小學(xué)時我們學(xué)過,任何一個假分數(shù)都可以化為一個整數(shù)與一個真分數(shù)的和的形式,同樣道理,任何一個分子次數(shù)不低于分母次數(shù)的分式都可以化為一個整式與另一個分式的和(或差)的形式,其中分式的分子次數(shù)低于分母次數(shù).

如:.

材料2:對于式子,利用換元法,令,.則由于,所以反比例函數(shù)有最大值,且為3.因此分式的最大值為5.

根據(jù)上述材料,解決下列問題:

1)把分式化為一個整式與另一個分式的和的形式,其中分式的分子次數(shù)低于分母次數(shù).

2)當(dāng)的值變化時,求分式的最大(或最。┲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,ABC的頂點均在格點上。建立平面直角坐標(biāo)系后,A的坐標(biāo)為(4,1),B的坐標(biāo)為(1,1).

(1)請畫出△ABC關(guān)于y軸對稱的△A1B1C1.

(2)將△ABC繞點O逆時針旋轉(zhuǎn)90°后得到△A2B2C2,試在圖中畫出圖形△A2B2C2,并計算點C旋轉(zhuǎn)到點C2所經(jīng)過的路徑長.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個能被13整除的自然數(shù)我們稱為十三數(shù)”,“十三數(shù)的特征是:若把這個自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個數(shù)的差是383﹣357=26,26能被13整除,因此383357十三數(shù)”.

(1)判斷3253254514是否為十三數(shù),請說明理由.

(2)若一個四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個位數(shù)字相同,則稱這個四位數(shù)為間同數(shù)”.

求證:任意一個四位間同數(shù)能被101整除.

若一個四位自然數(shù)既是十三數(shù),又是間同數(shù),求滿足條件的所有四位數(shù)的最大值與最小值之差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每一幅圖中都有若干個大小不同的四邊形,第1幅圖中有1個四邊形,第2幅圖中有3個四邊形,第3幅圖中有5個四邊形…

1)第4幅圖中有 個四邊形,第5幅圖中有 個四邊形;

2)根據(jù)第1幅圖到第5幅圖的規(guī)律,推測第幅圖中有 個四邊形;(用含字母的代數(shù)式表示)

3)如果第幅圖中有4039個四邊形,請你計算的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】概念學(xué)習(xí)

規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.

從三角形不是等腰三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.

理解概念

如圖1,在中,,請寫出圖中兩對“等角三角形”概念應(yīng)用

如圖2,在中,CD為角平分線,,

求證:CD的等角分割線.

中,,CD的等角分割線,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家16月份的用水量統(tǒng)計如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯誤的是 ).

A、眾數(shù)是6 B、平均數(shù)是5 C、中位數(shù)是5 D、方差是

查看答案和解析>>

同步練習(xí)冊答案