現(xiàn)有若干張邊長不相等但都大于6cm的正方形紙片,從中任選一張,如圖從距離正方形的四個頂點2cm處,沿45°角畫線,將正方形紙片分成5部分,則中間陰影部分的面積是    cm2
【答案】分析:延長小正方形的一邊AB,與大正方形的一邊交于C點,連接CD,構(gòu)造直角邊長為2的等腰直角三角形,將小正方形的邊長轉(zhuǎn)化為等腰直角三角形的斜邊長來求解即可.
解答:解:如圖,延長小正方形的一邊AB,與大正方形的一邊交于C點,連接CD,
∴△CED為直角邊長為2cm的等腰直角三角形,
∴CD===2
∴陰影正方形的邊長=AB=2cm,
∴陰影正方形的面積為:2×2=8(cm2).
故答案為:8.
點評:本題主要考查了正方形的性質(zhì),勾股定理的應(yīng)用,關(guān)鍵是正確做出輔助線,求出CD的長,進而得到正方形的邊長,同時也滲透了轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)現(xiàn)有若干張邊長不相等但都大于4cm的正方形紙片,從中任選一張,如圖從距離正方形的四個頂點2cm處,沿45°角畫線,將正方形紙片分成5部分,則中間陰影部分的面積是
 
cm2;若在上述正方形紙片中再任選一張重復(fù)上述過程,并計算陰影部分的面積,你能發(fā)現(xiàn)什么規(guī)律:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)現(xiàn)有若干張邊長不相等但都大于4cm的正方形紙片,從中任選一張,如圖從距離正方形的四個頂點2cm處,沿45°角畫線,將正方形紙片分成5部分,則中間陰影部分的面積是
 
cm2;若在上述正方形紙片中再任選一張重復(fù)上述過程,并計算陰影部分的面積,你能發(fā)現(xiàn)什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•甘孜州)現(xiàn)有若干張邊長不相等但都大于6cm的正方形紙片,從中任選一張,如圖從距離正方形的四個頂點2cm處,沿45°角畫線,將正方形紙片分成5部分,則中間陰影部分的面積是
8
8
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年遼寧省沈陽市和平區(qū)中考數(shù)學(xué)監(jiān)測卷(一)(解析版) 題型:解答題

現(xiàn)有若干張邊長不相等但都大于4cm的正方形紙片,從中任選一張,如圖從距離正方形的四個頂點2cm處,沿45°角畫線,將正方形紙片分成5部分,則中間陰影部分的面積是______cm2;若在上述正方形紙片中再任選一張重復(fù)上述過程,并計算陰影部分的面積,你能發(fā)現(xiàn)什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省濟南市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•濟南)現(xiàn)有若干張邊長不相等但都大于4cm的正方形紙片,從中任選一張,如圖從距離正方形的四個頂點2cm處,沿45°角畫線,將正方形紙片分成5部分,則中間陰影部分的面積是    cm2;若在上述正方形紙片中再任選一張重復(fù)上述過程,并計算陰影部分的面積,你能發(fā)現(xiàn)什么規(guī)律:   

查看答案和解析>>

同步練習(xí)冊答案