【題目】如圖,□ ABCD中,E是AD邊上一點,AD=4,CD=3,ED=,∠A=45.點P,Q分別是BC,CD邊上的動點,且始終保持∠EPQ=45°.將 CPQ沿它的一條邊翻折,當翻折前后兩個三角形組成的四邊形為菱形時,線段BP的長為________.
【答案】,3,
【解析】過點B作BF⊥AD于點F,連接BE,根據(jù)平行四邊形的性質(zhì)及已知條件,可證得△BEF是等腰直角三角形,求出BF、BE、的長,再利用三角形的外角性質(zhì)結(jié)合已知,證明∠2=∠1,∠EBP=∠C,利用相似三角形的判定,可證得△BPE∽△CQP,再分三種情況討論:①當CQ=QP時,則BP=PE,可證得四邊形BPEF是矩形,可求出BP的長;②當CP=CQ時,則BP=BE=3;③當CP=PQ時,則BE=PE=3,再根據(jù)△BPE是等腰直角三角形,利用勾股定理,可求出BP的長,從而可得出答案.
如圖,過點B作BF⊥AD于點F,連接BE
∵平行四邊形ABCD
∴AD∥BC
∴∠BFE=∠FBP=90°
在Rt△ABF中,∠A=45°,AB=3
∴BF=AF=ABcos45°=3×=
∴EF=AD-AF-DE=4--=
∴EF=BF
∴∠FBE=∠EBP=45°=∠C
∠2+∠EFQ=∠1+∠C
∵∠EFQ=∠C=45°
∴∠2=∠1
∴△BPE∽△CQP
將 △ CPQ沿它的一條邊翻折,當翻折前后兩個三角形組成的四邊形為菱形時,分三種情況:
①當CQ=QP時,則BP=PE
∴∠EBP=∠BEP=45°,則∠BPE=90°
∴四邊形BPEF是矩形
∴BP=EF=
②當CP=CQ時,則BP=BE=3
③當CP=PQ時,則BE=PE=3,∠BEP=90°
∴△BPE是等腰直角三角形
∴BP=.
故答案為:、3、
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長為2016個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A-B-C-D…的規(guī)律繞在ABCD的邊上,則細線另一端所在位置的點的坐標是( )
A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是BC邊上的一點,∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點F.
(1)填空:∠AFC=______度;
(2)求∠EDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是根據(jù)九年級某班50名同學一周的鍛煉情況繪制的條形統(tǒng)計圖,下面關(guān)于該班50名同學一周鍛煉時間的說法錯誤的是( )
A. 平均數(shù)是6.5
B. 中位數(shù)是6.5
C. 眾數(shù)是7
D. 平均每周鍛煉超過6小時的人占總數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對角線相交于O,過C點作CE⊥BD交BD于E點,H為BC中點,連接AH交BD于G點,交EC的延長線于F點,下列5個結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE;⑤CF=BD.正確的有( 。﹤.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關(guān)系,為什么?
(2)BE與DF有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),……,按這樣的運動規(guī)律,經(jīng)過第2018次運動后,動點P的坐標是( )
A. (2018,1)B. (2018,0)C. (2018,2)D. (2017,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩點的坐標分別為(6,0),(0,6),點P從點A出發(fā),沿AB方向以每秒個單位的速度向終點B運動;同時動點Q從點B出發(fā)沿BO方向以每秒1個單位的速度向終點Q運動,將△PQO沿BO翻折,點P的對應點為點C,若四邊形QPOC為菱形,則點C的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等邊三角形,點D是直線AB上一點,延長CB到點E,使BE=AD,連接DE,DC,
(1)若點D在線段AB上,且AB=6,AD=2(如圖①),求證:DE=DC;并求出此時CD的長;
(2)若點D在線段AB的延長線上,(如圖②),此時是否仍有DE=DC?請證明你的結(jié)論;
(3)在(2)的條件下,連接AE,若,求CD:AE的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com