年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖3,已知二次函數(shù) =,當(dāng)<<時(shí), 隨的增大
而增大,則實(shí)數(shù)a的取值范圍是 ( )
(A)> (B)<≤ (C)>0 (D)<<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,△AOB的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(4,3),O(0,0),B(6,0).點(diǎn)M是OB邊上異于O,B的一動(dòng)點(diǎn),過點(diǎn)M作MN∥AB,點(diǎn)P是AB邊上的任意點(diǎn),連接AM,PM,PN,BN.設(shè)點(diǎn)M(x,0),△PMN的面積為S.
(1)求出OA所在直線的解析式,并求出點(diǎn)M的坐標(biāo)為(1,0)時(shí),點(diǎn)N的坐標(biāo);
(2)求出S關(guān)于x的函數(shù)關(guān)系式,寫出x的取值范圍,并求出S的最大值;
(3)若S:S△ANB=2:3時(shí),求出此時(shí)N點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,在平面直角坐標(biāo)系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射線OC以每秒2個(gè)單位長度的速度向右平行移動(dòng),當(dāng)射線OC經(jīng)過點(diǎn)B時(shí)停止運(yùn)動(dòng),設(shè)平行移動(dòng)x秒后,射線OC掃過Rt△ABO的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=3秒時(shí),射線OC平行移動(dòng)到O′C′,與OA相交于G,如圖2,求經(jīng)過G,O,B三點(diǎn)的拋物線的解析式;
(3)現(xiàn)有一動(dòng)點(diǎn)P在(2)中的拋物線上,試問點(diǎn)P在運(yùn)動(dòng)過程中,是否存在三角形POB的面積S=8的情況?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度得矩形AB′C′D′,點(diǎn)C′落在AB的延長線上,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖,四邊形ABCD為平行四邊形,以CD為直徑作⊙O,⊙O與邊BC相交于點(diǎn)F,⊙O的切線DE與邊AB相交于點(diǎn)E,且AE=3EB.
(1)求證:△ADE∽△CDF;
(2)當(dāng)CF:FB=1:2時(shí),求⊙O與▱ABCD的面積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com