【題目】如圖,C為線段AB延長(zhǎng)線上一點(diǎn),D為線段BC上一點(diǎn),CD=2BD,E為線段AC上一點(diǎn),CE=2AE
(1)若AB=18,BC=21,求DE的長(zhǎng);
(2)若AB=a,求DE的長(zhǎng);(用含a的代數(shù)式表示)
(3)若圖中所有線段的長(zhǎng)度之和是線段AD長(zhǎng)度的7倍,則的值為 .
【答案】(1)12;(2);(3) .
【解析】
(1)利用CD=2BD,CE=2AE,得出AE=AC=(AB+BC),進(jìn)一步利用BE=AB-AE,DE=BE+BD得出結(jié)論即可;
(2)利用(1)的計(jì)算過(guò)程即可推出;
(3)圖中所有線段有AE、AB、AD、AC、EB、ED、EC、BD、BC、DC共10條,求出所有線段的和用AC表示即可.
解:(1)∵CD=2BD,BC=21,
∴BD=BC=7,
∵CE=2AE,AB=18,
∴AE=AC=(AB+BC)=×(18+21)=13,
∴BE=AB﹣AE=18﹣13=5,
∴DE=BE+BD=5+7=12;
(2)∵CD=2BD,
∴BD=BC,
∵CE=2AE,AB=a,
∴AE=AC,
∴BE=AB﹣AE=AB﹣AC,
∴DE=BE+BD=AB﹣AC+BC=AB﹣(AC﹣BC)=AB﹣AB=AB,
∵AB=a,
∴DE=a;
(3)設(shè)CD=2BD=2x,CE=2AE=2y,
則BD=x,AE=y,
所有線段和AE+AB+AD+AC+EB+ED+EC+BD+BC+DC=4y+3(2y﹣3x)+2x+2x+3(2y﹣3x)+2x+2x+2x+2x+2x=7(y+2y﹣3x+x),
y=2x,
則AD=y+2y﹣3x+x=3y﹣2x=4x,AC=3y=6x,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD被EF所截,點(diǎn)G,H為它們的交點(diǎn),∠1∶∠2=5∶3,∠2與它的內(nèi)錯(cuò)角相等,HP平分∠CHG.求:
(1)∠4的度數(shù);
(2)∠CHP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某課外學(xué)習(xí)小組在設(shè)計(jì)一個(gè)長(zhǎng)方形時(shí)鐘鐘面時(shí),欲使長(zhǎng)方形的寬為20厘米,時(shí)鐘的中心在長(zhǎng)方形對(duì)角線的交點(diǎn)上,數(shù)字2在長(zhǎng)方形的頂點(diǎn)上,數(shù)字3、6、9、12標(biāo)在所在邊的中點(diǎn)上,如圖所示。
(1)問(wèn)長(zhǎng)方形的長(zhǎng)應(yīng)為多少?
(2)請(qǐng)你在長(zhǎng)方框上點(diǎn)出數(shù)字1的位置,并說(shuō)明確定該位置的方法;
(3)請(qǐng)你在長(zhǎng)方框上點(diǎn)出鐘面上其余數(shù)字的位置,并寫出相應(yīng)的數(shù)字(說(shuō)明:要畫出必要的、
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體由幾個(gè)棱長(zhǎng)均為1的小正方體搭成,從上面看到的幾何體的形狀圖如圖(1)所示,正方形中的數(shù)字表示該位置的小正方體的個(gè)數(shù).
(1)請(qǐng)?jiān)趫D(2)的方格紙中畫出從正面看和從左面看到的幾何體的形狀圖;
(2)根據(jù)從三個(gè)方向看到的幾何體的形狀圖,請(qǐng)你計(jì)算該幾何體的表面積為________平方單位(包含底面);
(3)若從上面看到的幾何體的形狀圖不變,幾何體各位置的小正方體的個(gè)數(shù)可以改變,則搭成這樣的幾何體的表面積最大為________平方單位(包含底面).
圖(1) 圖(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)反比例函數(shù)C1:y=和C2:y=在第一象限內(nèi)的圖象如圖,P在C1上作PC、PD垂直于坐標(biāo)軸,垂線與C2交點(diǎn)為A、B,則下列結(jié)論,其中正確的是( )
①△ODB與△OCA的面積相等;②四邊形PAOB的面積等于k1- k2;③PA與PB始終相等;④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn)
A. ①② B. ②④ C. ①②④ D. ①③④
【答案】C
【解析】①∵A、B兩點(diǎn)都在y=上,∴△ODB與△OCA的面積都都等于,則①正確;②S矩形OCPB-S△AOC-S△DBO=|k2|-2×|k1|÷2=k2-k1,則②正確;③只有當(dāng)P的橫縱坐標(biāo)相等時(shí),PA=PB,錯(cuò)誤;④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn),正確.故選C.
【題型】單選題
【結(jié)束】
10
【題目】如圖,反比例函數(shù)(k>0)與一次函數(shù)的圖象相交于兩點(diǎn)A(,),B(,),線段AB交y軸與C,當(dāng)|- |=2且AC = 2BC時(shí),k、b的值分別為( )
A. k=,b=2 B. k=,b=1 C. k=,b= D. k=,b=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AC=3,BC=4.如果以點(diǎn)C為圓心,r為半徑的圓與斜邊AB只有一個(gè)公共點(diǎn),求半徑r的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的集合中:
-3.1,3.1415,-,+31,0.618,-,0,-1,-(-3).
正數(shù)集合:{ …};
整數(shù)集合:{ …};
負(fù)數(shù)集合:{ …};
負(fù)分?jǐn)?shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水產(chǎn)公司有一種海產(chǎn)品共2 104千克,為尋求合適的銷售價(jià)格,進(jìn)行了8天試銷,試銷情況如下:
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 | 第8天 | |
售價(jià)x(元/千克) | 400 | 250 | 240 | 200 | 150 | 125 | 120 | |
銷售量y(千克) | 30 | 40 | 48 | 60 | 80 | 96 | 100 |
觀察表中數(shù)據(jù),發(fā)現(xiàn)可以用反比例函數(shù)刻畫這種海產(chǎn)品的每天銷售量y(千克)與銷售價(jià)格x(元/千克)之間的關(guān)系.現(xiàn)假定在這批海產(chǎn)品的銷售中,每天的銷售量y(千克)與銷售價(jià)格x(元/千克)之間都滿足這一關(guān)系.
(1)寫出這個(gè)反比例函數(shù)的解析式,并補(bǔ)全表格;
(2)在試銷8天后,公司決定將這種海產(chǎn)品的銷售價(jià)格定為150元/千克,并且每天都按這個(gè)價(jià)格銷售,那么余下的這些海產(chǎn)品預(yù)計(jì)再用多少天可以全部售出?
(3)在按(2)中定價(jià)繼續(xù)銷售15天后,公司發(fā)現(xiàn)剩余的這些海產(chǎn)品必須在不超過(guò)2天內(nèi)全部售出,此時(shí)需要重新確定一個(gè)銷售價(jià)格,使后面兩天都按新的價(jià)格銷售,那么新確定的價(jià)格最高不超過(guò)每千克多少元才能完成銷售任務(wù)?
【答案】(1),表格中填:300,50;(2)20天(3)最高不超過(guò)每千克60元。.
【解析】整體分析:
(1)根表格中x,y的對(duì)應(yīng)值確定x,y的函數(shù)關(guān)系式,補(bǔ)全表格;(2)分別求出8天后剩余的產(chǎn)品數(shù)量及第8天的產(chǎn)品價(jià)格;(3)確定繼續(xù)銷售15天后的產(chǎn)品數(shù)量,求出后2天每天的銷售量,即可求解.
(1)∵xy=12000,
∴反比例函數(shù)的解析式y=.
當(dāng)y=40時(shí),x==300;
當(dāng)x=240時(shí)y==50.
(2)銷售8天后剩下的數(shù)量2104-(30+40+48+50+60+80+96+100)=1600,
當(dāng)x=150時(shí),y==80,
∴1600÷80=20天,
∴余下的這些海產(chǎn)品預(yù)計(jì)再用20天可以全部售出.
(3)1600-80×15=400千克,
400÷2=200千克/天,
即如果正好用2天售完,那么每天需要售出200千克.
當(dāng)y=200時(shí),x==60.
所以新確定的價(jià)格最高不超過(guò)60元/千克才能完成銷售任務(wù).
【題型】解答題
【結(jié)束】
22
【題目】如圖,已知正方形的面積為9,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)在軸上,點(diǎn)在軸上,點(diǎn)在函數(shù)的圖象上,點(diǎn)為其雙曲線上的任一點(diǎn),過(guò)點(diǎn)分別作軸、軸的垂線,垂足分別為、,并設(shè)矩形和正方形不重合部分的面積為.
(1)求點(diǎn)坐標(biāo)和的值;
(2)當(dāng)時(shí),求點(diǎn)坐標(biāo);
(3)寫出關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC.中,AB=BC,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度,得到△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于點(diǎn)D、F,下列結(jié)論:①∠CDF=α,②A1E=CF,③DF=FC,④A1F=CE.其中正確的是(寫出正確結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com